Paradox for Windows

Version 1.0

Learning ObjectPAL"

Borland International, Inc. 1800 Green Hills Road
PO. Box 660001, Scotts Valley, CA 95067-0001, USA

Copyright ©1992 by Borland International, Inc. Portions copyright 1985 by Borland
International, Inc. All rights reserved. Borland and Paradox are trademarks of Borland
International. Microsoft and MS are trademarks of Microsoft Corporation. Windows, as
used in this manual, refers to Microsoft’s implementation of a windows system.

10 9 8 7 6 5 4 3 2 1

R1

Chapter 1

Introduction

Before you use ObjectPAL
Note to PAL programmers

How to use this manual
Printing conventions

Chapter 2
ObjectPAL basics

Programming in ObjectPAL .
What is ObjectPAL? .

An extension of Paradox .
Object-based

Event-driven

Modular

Ob]ectPAL for programmers .

Language features .
Control features . .
Objects in ObjectPAL

Chapter 3
The ObjectPAL environment

The ObjectPAL Editor . .
The Methods dialog box .
The ObjectPAL Editor window

Editing in an Editor window
The Language menu
Keywords

The Types and Methods dlalog box
The Display Objects and Properties

dialog box .

The Constants dialog box .

Creating a source code report

Delivering forms to users .
The Properties menu

The ObjectPAL Debugger .

W N= =

NN O Ol

x©

11
12
12
13

15

15
15
17
17
18
19
19

21
21
22
22
22

24

CONTENTS

On to programming

Chapter 4
Programming a button

Built-in methods .
Changing the default behav1or

Attaching your own code .
How it works .

Summary

Chapter 5
Initiating and responding to actions

Stages in writing ObjectPAL applications
Creating the form .

Programming a button to take an action
How it works .

Responding to an action
How it works

Actions and properties
How it works .

Summary

Chapter 6
Input and output

A quick way to get user input
How it works .

Searching for values .
How it works .

Inserting a record and generating a
unique key value
How it works .

Printing a report
How it works .
Summary

Contents

24

25
26
26

28
29

29

31
31
32
34
35

36
38

39
41

42

43

43
45

46
48

49
51

52
54

54

Chapter 7
Validating data entry

Creating a multi-table form
Using built-in validity checks

Adding validity checks with Ob]ectPAL

How it works

Supplying values .

How it works

Handling key violations
Single-record forms
How it works
Multi-table forms . .
The closer-is-better pr1nc1ple
How it works

Summary .

Chapter 8

Controlling another form

Designing a dialog box

Managing a dialog box
How it works

Summary .

Chapter 9
Working outside the data model
What is a TCursor?

Using a TCursor
How it works

Summary .

Chapter 10
Where do I go from here?

Index

Learning ObjectPAL

55
55
58

59
59

60
62

63
63
65
66
67
68

68

69
69

71
73

75

77
77

78
79

81

83

85

EXAMPLES

4-1 Hello, world! application . . . 26
42 Opening an ObjectPAL Editor wmdow 26
4-3 Attaching yourowncode 28
5-1 Creating the NewCust form 33
52 Attaching code toa button 34
5-3 Tab default behavior 36
5-4 Controlling taborder 37
5-5 Responding to an action . . . 40
6-1 Using view to display a dialog box . 43
6-2 Searching based on user input . . . 46
6-3 Insertinganewrecord 50
6-4 Printing a pre-designed report . . . 52
7-1 Creating a multi-table foorm 55
7-2 Built-in validity checking 58
7-3 ObjectPAL validity checking 59
7-4 Performing calculations 61
7-5 Aformasmanager 64
7-6 Handling key violations in a

multi-table form 67
8-1 Designing adialogbox 69
82 Setting a form’s properties 70
8-3 Managing a dialogbox 72
9-1 UsingaTCursor 78

Contents iii

1-1 Printing conventions .
3-1 ObjectPAL Editor actions

5-1 ObjectPAL Beginner-level

action constants

Learning ObijectPAL

18

35

TABLES

2-1
3-1
3-2
3-3
3-4
3-5

3-6

4-1
4-2

5-1
7-1
8-1
9-2

10-1

Using the Object Tree

The Methods dialog box

The ObjectPAL Editor

The Language pop-up menu .

The Types and Methods dialog box

The Display Objects and Propertles
dialog box . .

The Constants dialog box
ObjectPAL Level setting
Hello, world!

Inspect the object, select a method
open an Editor window

Properties of the field object Name .
The Orders form
Orders as the calling form

Attaching code to the Qtl/ field ob]ect

in LINEITEM

Record displayed durmg
TCursor locate . .
Using the Help system in the
example applications .

16
17
19
20

21
22
23
25

27
40
61
72

78

80

84

FIGURES

Contents

v

vi

Learning ObjectPAL

CHAPTER 1

Introduction

ObjectPAL™ is the integrated programming language for Paradox for
Windows. You can use ObjectPAL to add new features to a Paradox
application—features that you cannot add interactively.

If you are a new programmer, you will find that you can easily
spruce up an interactive application with ObjectPAL. For instance,

0O You can add buttons that perform frequently repeated actions.

0 If your database contains a large volume of data, you can build a
dialog box that helps users get to the records they want when
something more sophisticated than a standard search is required.

O The success of your application may depend on a robust
data-entry module. If so, you can create an editing routine that
watches what users enter and responds to incorrect entries.

0 On the frivolous side, if you're looking for a way to add a little
pizzazz, you can create animation effects with ObjectPAL.

If you’ve never programmed before and aren’t sure you want to learn
ObjectPAL, glance through this manual to get an idea of what you
can do with ObjectPAL. Allow yourself to be intrigued.

Before you use ObjectPAL

Important

ObjectPAL and Paradox are tightly integrated. Therefore, the more
you know about Paradox, the more you can take advantage of it in
your ObjectPAL programs.

To get the most out of this manual, you should first read the User’s
Guide and get some experience using Paradox interactively. You
should understand how to

O Create tables, forms, and reports

O Use the SpeedBar to place design objects

Chapter 1, Introduction 1

How to use this manual

The best way fo understand
ObjectPAL is to use it.

Note to PAL
programmers

Work interactively with table frames and multi-record objects
Name objects

Inspect objects and set object properties

Set and change your working directory

Construct queries using query by example (QBE)

[I R o N

Assign aliases
Sort tables

When you're familiar with these actions and concepts, it's much
easier to learn ObjectPAL.

If you haven't installed and configured Paradox, see Getting Started
for instructions.

This manual doesn’t cover all aspects of programming, but it
introduces programming concepts as they apply to ObjectPAL. You
should work through the examples and try things on your own. The
best way to understand ObjectPAL is to use it. ObjectPAL often
provides more than one way to accomplish a task; experiment to find
the way that works best for you.

If you're an experienced PAL programmer, you'll find ObjectPAL
different in many respects. However, the things you’ve learned about
database programming—things like working with data in tables,
records, and fields; using query by example; and controlling access to
data—still apply. Appendix A in the ObjectPAL Developer’s Guide
summarizes the most important differences between PAL and
ObjectPAL.

How to use this manual

2 Learning ObjectPAL

This book is designed to help users who have little or no
programming experience get up and running in ObjectPAL with
minimal trouble. If you are an experienced programmer, this book
serves as a fast-paced introduction to the ObjectPAL language. As
you work through the examples, you learn to create Paradox for
Windows applications with buttons, dialog boxes, validity checks,
and key violation checks.

This manual asumes that you are already familiar with interactive
Paradox. In this book, “interactive Paradox” means the set of things
you can accomplish in Paradox without ObjectPAL.

How to use this manual

You should read Getting Started if you are new to Paradox and read
the User’s Guide to fully understand interactive Paradox tools. You
should complete the examples in the order they appear. Later you
can refer back to this manual for specific code. After mastering the
basic concepts in this manual, you can move on to the ObjectPAL
Developer’s Guide and explore the full power of ObjectPAL.

Printing conventions In text (as opposed to code examples), this manual refers to methods
and procedures by name only; it does not give the full syntax. For
example, suppose the text mentions the attach method defined for
the Table type. That’s a reference to the method whose complete
syntax is

attach (const tableName String) Logical

To see the complete syntax for every ObjectPAL method and
procedure, refer to the ObjectPAL Reference, the online help, or the
Quick Reference.

Table 1-1 lists the printing conventions used in this book.

Table 1-1 Printing conventions

Convention Applies to Examples
Bold Method names and messages insertRecord, Paradox
displayed by Paradox displays the message
Index error on key field
Italic Names of Paradox objects, Answer table, searchButton,
glossary terms, variables, searchVal

emphasized words

ALL CAPS DOS files and directories, PARADOX.EXE, CREATE,
reserved words, operators, CAWINDOWS
types of queries

Initial Caps Applications, fields, menu Sample application, Price
commands field, Form | View Data
command
Keycap font Keys on your computer’s F1, Enter
keyboard
Monospaced Code examples, ObjectPAL myTable.open("sites.db")
font code
Type-in font Text that you type in Jan - Jun, 7/20/92

Chapter 1, Introduction 3

4

Learning ObjectPAL

CHAPTER 2

ObjectPAL basics

This chapter introduces ObjectPAL by giving you a conceptual
overview of the benefits and structure of the language.

Programming in ObjectPAL

Programming in ObjectPAL is in some ways similar to programming
in other languages and in other ways different. ObjectPAL is similar
to traditional languages because it uses variables, provides control
structures like if...then...else, for loops, and while loops, performs
calculations, and gives you a way to create functions (in ObjectPAL,
they’re called methods and procedures).

ObjectPAL differs from traditional languages because it is
object-based. When you use a traditional language, programming is
an all-or-nothing proposition: either you take control of the
application from beginning to end, or you don’t program at all. With
ObjectPAL, however, you need not face such a daunting task. Because
ObjectPAL centers on objects, you can program as many or as few
objects as you want.

The objects you write ObjectPAL code for are the objects you’ve been
working with all along. Do you need to have Paradox check a value
that was just entered in a field and beep if that value is wrong?
Programming this function is simple; you change the built-in code
that runs when the field’s value changes. The operation takes only a
little time to learn, and it’s easy to use in other situations once you
learn how. Naturally, not everything you want to do with ObjectPAL
is so simple, but you get to decide how much or how little
programming you do.

Chapter 2, ObijectPAL basics 5

What is ObjectPAL?

What is ObjectPAL?

An extension of
Paradox

Automate repetitive tasks.

Correct field format.

Protect data.

6 Learning ObjectPAL

Formally, ObjectPAL is a high-level, event-driven, object-based, visual
programming language. You can use ObjectPAL to create a
completely customized application, one with entirely new buttons,
menus, dialog boxes, prompts, warnings, and help. You can create a
user interface for a database application, or you can use ObjectPAL to
create an application that has nothing to do with databases.

Formal definitions and ambitious goals aside, a good way to get to
know ObjectPAL is to think of it as a tool that extends the power of
interactive Paradox. If you think of ObjectPAL as an extension of
Paradox, you can think of ways to use ObjectPAL to perform tasks
that would be awkward, difficult, time-consuming, or impossible to
perform without it.

Suppose that you want to create a unique but sequenced ID number
every time a user in a network setting opens a new invoice record. If
the last invoice created has the ID number 1203, for example, you
would want the next invoice number to be 1204. Without ObjectPAL,
you could create a single-record, single-field table in a shared data
directory and store the most recently used invoice ID number in that
field. Users could be instructed to open that table, start editing, lock
the record, change the ID number to the next number in the
sequence, unlock the record, leave Edit mode, close the table, return
to the invoice table, and enter the new ID number. With ObjectPAL,
you could have your application perform these steps automatically
whenever a user creates and posts a new invoice. (An example in
Chapter 6 shows how to do this.)

Performing detailed changes on fields can be difficult when you use
queries interactively. For example, if a phone-number field was
entered or imported to a table without parentheses around the area
code (or a dash that separated the area code from the rest of the
number), correcting the format with a query would be impossible.
Your alternative would be to fix one record at a time. With
ObjectPAL, however, you could write a routine that examines the
Phone field of each record and changes any fields that weren't
entered correctly.

At times, you'll want to warn users when they are about to do
something potentially damaging to the database (such as changing a
key field). Although the structure of your database (how you link the
tables, how you enforce referential integrity, and the type of field
validation you define) can go a long way toward protecting the
integrity and validity of data, sometimes you’ll need more
specialized protection, which is impossible to do without ObjectPAL.

The power of Paradox

Object-based

Properties

Context

Visual programming

Object Trees

What is ObjectPAL?

Keep in mind, however, that many of the things you need to do with
a database you can do with Paradox interactively. If you are turning
to ObjectPAL only as a means of solving a particularly thorny
data-handling problem, you should first make sure that you cannot
use interactive Paradox to solve that problem. Even many advanced
users of interactive Paradox have only begun to tap the power of
queries and calculations. Remember, too, that data validation, table
lookups, choice lists, and many other powerful user-interface features
are available in interactive Paradox.

ObjectPAL works with objects—the things you create and work with
when you design forms and reports, including fields, lines, ellipses,
boxes, and table frames.

The first thing to remember about objects is something that you
already know: objects have properties. When you create an object, you
create it with properties that define the appearance and behavior of
the object. The properties of a box, for example, include size, position,
color, and frame. Using ObjectPAL, you can create or change all the
properties that you use in interactive Paradox. For example, you can
create a big blue box interactively and then use ObjectPAL to change
it to a small red box.

The next thing to remember about objects is objects exist in a context.

The context of a given object is defined by the objects that contain it.
This feature of ObjectPAL gives advanced programmers great
flexibility and power. As a beginning ObjectPAL programmer, all you
have to remember is that the form contains all other objects. When
you place objects in a form, you are giving those objects a context.

This process of placing objects is called visual programming, because
the form lets you see the user interface of your application as you
program. To create an ObjectPAL application, you place objects—for
example, fields, choice lists, drop-down edit lists, buttons, and
icons—in a form and set their properties. Once you're happy with the
look and feel of the form, you use ObjectPAL to change the behavior
of only those objects whose default behavior does not suit your needs.

This work is very different from the work you would have to do to
create an application in a non-visual environment. In many other
languages, you create the user interface by writing code in some kind
of text editor. To run the application, you must compile the code,
debug it, run it again, and so on until it works. Every time you
blindly change the position of an element, you must access the code,
a procedure that potentially creates more bugs.

You can see the relationships of the objects to one another not only in
the form but also in an Object Tree. Object Trees provide a conceptual
view of the relationships among objects.

Chapter 2, ObijectPAL basics 7

What is ObjectPAL2

Object Trees also let you access the code for an object. When an
Object Tree for a form is open, you can see all the objects in the form
and all the objects inside those objects. The basic steps to display an
object tree for a form are

1. Select the page by clicking anywhere on the page (outside of an
object).

2. Press Esc to select the form.

3. Open an Object Tree by clicking the Object Tree button (or choose
Form | Object Tree).

[

@ Toinspect an object in the Object Tree, right-click the object’s name in
%' an Object Tree. An underlined object name indicates that the object
has custom code attached to it.

For example, suppose a form contains one page, and that page
contains two boxes, and each box contains two circles. Figure 2-1
shows the form and its corresponding Object Tree.

Figure 2-1 Using the Object Tree

File Edit Form Design Properties . Window . Iﬂelp ==
715 /(O] AR EE mEErE
= 0 e q BO wvias
stinamna e B b e iR i
*
EE
N4
ha
« >
T e s e e T ey St

The Object Tree diagrams the visual, spatial
relationships between objects in a form

Event-driven In Windows, no program has absolute, permanent control. No
program can ever assume that it has first-hand knowledge of the
specific hardware of a system or presume to know about other
programs or what those programs are doing. Any application can be
stopped at practically any time—whenever the user clicks on another
application.

8 Learning ObjectPAL

The eventdriven interface

Builtin behavior

Builtin methods and default
responses

Types

What is ObjectPAL2

This interface is possible for two reasons. First, every application is
totally dependent on Windows to provide processing time, monitor
space, and other resources. Ultimately, Windows controls every
Windows application. Second, the nature of Windows encourages
(and sometimes forces) Windows applications to be event-driven.

An event-driven interface is one that responds only to specific system
or user actions, such as mouse moves. The application takes control
of the system (through Windows) long enough to respond to an
event; the application then waits for the next event. To extend this
concept further, you can think of every object as being a small
application.

Accordingly, a more elaborate description of objects takes into
account their event-driven nature: objects have a context that
determines their relationship to other objects, a set of properties that
determine their characteristics, and built-in methods that determine
their behavior in response to events.

When you draw a rectangle in a form, you are not merely drawing
but also taking the first step in programming. The box is an object
with properties that exist in the context of a form. But the box also
has a behavior, because Paradox built this box to respond to events.

By default, the box’s response to most events is nothing. You use
ObjectPAL to tell the box to do something other than, or more than,
the default response when a certain event occurs. For example, you
can change the color of the box when the user moves inside the
borders of the box and change the color back again when the user
leaves the box.

As an ObjectPAL programmer, you redefine the response of objects.
In other words, you don't tell the box to respond, because Paradox
built the box to be responsive; you merely tell the box how to
respond. Furthermore, you don’t have to figure out how you want
that box to respond to every possible event; you only tell the box
how to respond if you need to change the default response to a
particular event.

Every object has a set of default responses. To modify the default
response of an object, you modify one or more of that object’s built-in
methods. You'll spend most of your time in ObjectPAL modifying
built-in methods.

ObjectPAL groups all the objects that you draw using the SpeedBar
into a category called UlObjects. (Categories of objects are called types
in ObjectPAL. Some other languages call them classes.) A page of a
form is a UIODbject, as is the form itself. Forms have behavior that
goes beyond their behavior as a UlObject; for the time being,
however, think of them as UlObjects.

Chapter 2, ObjectPAL basics 9

What is ObjectPAL?

Modular

Model real-world behavior

10

Objects are
selfcontained.

Learning ObjectPAL

UlIObjects come with their own sets of built-in methods. These
built-in methods are triggered automatically in response to events or
actions. For example, when you click inside the boundaries of an
object, Paradox calls the built-in mouseClick method for that object.

The set of methods built into an object varies according to the object.
Most UlObjects have the same basic set, with a few notable
exceptions; for example, field objects have a built-in changeValue
method, but boxes don’t. The changeValue method executes
whenever the value in a field object changes. Having a changeValue
method for a box doesn’t make sense, because a box doesn’t store
data values.

Paradox makes finding and modifying an object’s built-in methods
easy. You inspect the object to display the Properties menu, choose
Methods, and choose the built-in method you want to modify. An
ObjectPAL Editor window opens, and Paradox positions the cursor at
the point where you should start typing.

At the beginning of this chapter, you learned that you can use
ObjectPAL to do as little or as much programming as you want.
ObjectPAL offers this flexibility because objects are inherently
modular. In other words, objects are self-contained. You can change the
behavior of one object in a form without changing the behavior of all
the objects in the form.

The implications of this feature are more far-reaching than you might
think. The trivial side is that objects are easy to program. The
non-trivial side is that you can use ObjectPAL to build complex
systems. In a non-object-based language, a general rule is that the
bigger or more complex a system becomes, the more likely it is to
become unstable—and not merely because the system is bigger, has
more lines of code, and consequently has more bugs.

With traditional languages, systems were built with all the
intelligence at or near the top of the system. Processes in a system
were seen as linear, and programming was approached in linear
fashion. But real-world complex systems (systems such as traffic
patterns and the stock market) embody organic principles: nothing
travels in a straight line, and little change comes from the top of the
system. In a real-world system, control flows not only from the top of
the system but from the bottom—from the interaction of all the little
pieces, or subsystems.

Object-based programming lets you develop systems with a more
organic approach. In an object-based system, you build the
intelligence into the little pieces (the objects). If you focus on correctly
modeling the behavior of the subsystems, the complete system is

ObjectPAL for programmers

likely to feel much more intuitive and much more like a real-world
application.

Selfcontainment decreases Furthermore, an object-based system supports an incremental
erors. development process—a process where you can return to the

program again and again to refine it. You can return to an object and
make it smarter without jeopardizing the entire system. You can go
back over the code for an object and modify that code because the
object is relatively self-contained. To seasoned programmers, the
implication of this capability is obvious: maintaining and improving
an object-based system no longer requires the programmer to know
everything about the system. In a well-designed system, one small
change is exactly that—one small change.

You don’t need to know object-oriented design principles to start
programming in ObjectPAL. If you start with small chunks and then
work your way up, your system will be better-designed than if you
try to control everything from the top. The beauty of ObjectPAL is
that the best way to use it is also the easiest:

7 Place objects on a form
O Set properties for those objects

A If necessary, attach custom code to some of the built-in methods
for those objects

You can write programs the old-fashioned way—starting at the top
and working your way down to the bottom—but you’ll never
appreciate the full power of ObjectPAL if you do. On the other hand,
if you keep your application modular, so that the code that affects an
object is as close to that object as possible, your application will be
well-designed and easy to maintain.

ObjectPAL for programmers

The following sections describe ObjectPAL for users who have
programming experience. Some of these terms may be unfamiliar to
you, but they are explained in more detail later in this chapter, in the
following chapters, or in the ObjectPAL Developer’s Guide.

Although ObjectPAL is designed to be accessible to non-
programmers, serious developers should note that ObjectPAL is a
full-featured, high-level, extensible language. It is suitable for
demanding programmers writing sophisticated applications.

Chapter 2, ObjectPAL basics 1

ObjectPAL for programmers

Language features

Control features

12

Managing events

Setting properties

Manipulating tables

Learning ObjectPAL

ObjectPAL supports the following functions:
O Built-in event handling

Strong data typing

User-defined data types

a a a

Powerful data types such as resizeable arrays, associative arrays
(called dynamic arrays), and records

Structured program control
An extensive library of methods and procedures

User-defined methods and procedures

42 a2 2 Qa

Calls to functions and procedures written in other languages,
such as Pascal, C, and C++

A Calls to an externally compiled help system (one compiled with a
Windows Help Compiler)

ObjectPAL lets you trap for and change both keystrokes and mouse
actions. Usually, however, you don’t need to build this kind of
low-level control. Instead, you can build code that responds to events.
An event is a message to an object, generated by some activity (for
example, pressing a key or clicking the mouse).

You can capture, respond to, change, create, and simulate all mouse
events, including position, movement, right-clicks, left-clicks,
double-clicks, and clicks in concert with Shift, Alt or Ctrl. You have
similar control over all key presses.

You can open, position, size, minimize, maximize, and otherwise
manipulate forms and all other display objects. You can use multiple
forms as dialog boxes or as modules for an application.

Any object property that you can set interactively (for example,
color), you can set in ObjectPAL. When a form is running, ObjectPAL
can control many properties that are not available from the Properties
menu, such as an object’s position and focus status. For example, you
could “follow” a user around a form by drawing a colored frame
around the object that has focus.

You can create top-level menus with associated pull-down menus.
You can hide the SpeedBar and even reset the main title of the
Paradox Desktop.

Any table action that is normally available interactively is also
available through ObjectPAL. A host of actions that are unavailable
interactively are also available through ObjectPAL. For example, you
can manipulate tables as Tables, TableViews, TableFrames, and

Meanaging the file system

Querying data

Objects in ObjectPAL

ObjectPAL for programmers

TCursors. A Table is what you use for utility functions, such as Add
and Subtract. A TableView is a table opened in a window (what
Paradox creates when you choose File | Open | Table). A TableFrame is a
table object placed on a form. A TCursor is a table handle that you can
use behind the scenes; TCursors are handy for searching and sorting.

All the file system functions that are available interactively are also
available in ObjectPAL. You can call the built-in Browser to let a user
choose a file. You can delete or rename files, if you need to, or make
directories.

You can create queries (.QBE files) interactively and then execute
those queries in ObjectPAL. You also can create query statements
from scratch in ObjectPAL; these queries can include variables
evaluated at run time.

The terminology of objects may be more confusing to experienced
programmers than to novices, because the better you know a
language or a paradigm, the harder it is to learn new terms for it. But
learning about object-based programming is not difficult.

In everyday language, objects are just things—smart things. In
programmer’s terms, objects are data and code tightly bound
together. You create objects either interactively or with ObjectPAL.

To make object-based programming work for you, just remember to
start with the objects. In fact, start with the objects you already know
best—the objects you place on a form.

Don't start by trying to build complex multi-form applications with
low-level keyboard handlers, cascading menus, and flocks of dialog
boxes. In fact, you will learn ObjectPAL more effectively if you try
not to think too big, at least at first. Instead, for your first project,
think about making specific objects on specific forms do what you
want them to do. The possibilities for your next project will unfold as
you go.

Chapter 2, ObjectPAL basics 13

14 Learning ObjectPAL

CHAPTER 3

The ObjectPAL environment

The ObjectPAL environment for the most part is the same as the one
you’ve been working with all along: you use interactive Paradox to
build a form that becomes the basis of your application. Two special
tools, however, come in handy when you write ObjectPAL code: the
ObjectPAL Editor and the ObjectPAL Debugger.

O The ObjectPAL Editor lets you write and check code (and actually
does some of the writing for you).

0 The ObjectPAL Debugger lets you step through code one instruction
at a time, watch for certain changes, correct errors, and fine-tune
your application.

The following sections describe these two tools.

The ObjectPAL Editor

The Methods dialog box

The ObjectPAL Editor is where you write ObjectPAL code. When you
choose to modify a method or other code container from the Methods
dialog box, Paradox opens an Editor window. Your entry point to the
ObjectPAL Editor is the Methods dialog box.

The Methods dialog box opens when you inspect an object and
choose Methods from its menu, as shown in Figure 3-1. This dialog
box gives you access to code written for a specific object.

Most of the time, you use the Methods dialog box to modify built-in
methods. You can also use this dialog box to write other kinds of
code, including custom methods, custom procedures, constants,
variables, user-defined variable types, and declarations of library
methods and functions.

Chapter 3, The ObjectPAL environment 15

The ObjectPAL Editor

16

Builtin Methodss

New Custom Method

Var box

Const box

Learning ObjectPAL

Figure 3-1 The Methods dialog box

BOXES::grayCircle

HoR

An asterisk indicates that
this method has been
defined

Existing custom methods
(if any) are listed here

Enter the name for a new
custom method here

Following is a description of each panel in the Methods dialog box:

A The Built-in Methods panel of the dialog box lists the built-in
methods available for this object. To open a built-in method,
double-click the method name, or select the method name and
click OK. To open several methods, select as many methods as
you want and then choose OK. Paradox opens each method in a
separate Editor window.

7 An entry in the New Custom Method field creates a new method
attached to the current object. Paradox does not automatically call
custom methods in response to events.

Any custom methods defined for an object appear in the Custom
Methods section of the dialog box.

0 The Var box opens a variable window, called a Var window, in
which you declare variables that are global to the object. You can
also declare variables for a method in the Var section of that
method.

Declaring variables in a Var window makes the variables global to
the object. If a variable is global to an object, you can use the
variable in any of the methods attached to the object and in any of
the objects contained by this object. (Where you can use a method,
variable, constant, procedure, or type depends on where that item
is defined. The availability of data objects is broadly termed
scoping.)

7 The Const box opens a constant-declaration window, called a
Const window. Constants declared in a Const window are global
to the object. You also can declare constants in a Const section of a
method, but they will not be global to the object.

The ObjectPAL Editor

Type box @ The Type box opens a window in which you can declare
user-defined data types. Data types declared in a Type window
are available to all methods attached to this object and to all
objects contained by this object. You also can declare user-defined
types in the Type section of a method.

Proc box O The Proc box opens a window that lets you define procedures
global to the object. Procedures are like methods except that
procedures are not bound to an object type. Procedures defined in
a Proc window are available to all methods attached to this object
and to all objects contained by this object. You also can declare
procedures in Proc sections of a method.

Uses box 3 The Uses box opens a window that lets you declare methods and
functions called from an ObjectPAL library or a dynamic link
library (DLL). You can also declare library methods and functions
in a Uses section of a method.

The ObjectPAL Editor An ObjectPAL Editor window opens from the Methods dialog box
window whenever you select code to modify. When you open an Editor
window, the menu changes as shown in Figure 3-2.

Figure 3-2 The ObsjectPAL Editor

s Paradox for Windows nﬁ
The ObjectPAL Editor < _Eile _Edit _La _Eropertics _ Window _Help ____ |
menu and SpeedBar : 3 P B (-

boxOne.greenCircle.Color = DarkGreen
endmethod

The ObjectPAL Editor menu is available only when an ObjectPAL
Editor window is open. The File, Window, and Help menus are
standard menus.

Editing in an Editor window In terms of text-handling, the ObjectPAL Editor works like most
standard Windows editors. For example, to select text, either drag the
mouse or hold down the Shift key while you press a direction key.

Chapter 3, The ObjectPAL environment 17

The ObjectPAL Editor

The Language menu

18

Shortcut

Learning ObjectPAL

The ObjectPAL Editor window always opens in insert mode. In insert
mode, anything you type is inserted at the current insertion point. To
move around in the ObjectPAL Editor window, use the direction keys
or the scroll bar.

Table 3-1 summarizes common ObjectPAL editing actions.

Table 3-1 ObjectPAL Editor actions

Action Key combination or menu command

Select Shift+direction key extends text selection, or Drag the mouse, or
EditiSelect All selects the entire window

Copy Ctrl+Ins copies selected text to the Clipboard, or EditiCopy

Cut Shift+Del cuts selected text to the Clipboard, or Edit/Cut

Paste Shift+ins pastes text from the Clipboard, or EditiPaste

Delete Del erases selected text, or EditiDelete

Search EditiSearch and Edit/Search Next find a string
Replace EditiReplace and EditlReplace Next find and replace a string
Move to EditlGo To jumps to a specific line number

You can also use another editor, such as the Windows Notepad, to
write ObjectPAL code (choose Properties | Alternate Editor from the
ObjectPAL Editor menu). If you do, however, syntax checking and
other special features of the ObjectPAL Editor menu will not be
available.

The Language menu helps you write and check ObjectPAL code. To
check the code in a window for syntax errors, choose Language |
Check Syntax. The compiler examines the code for the form. If the
compiler finds an error, Paradox displays an error message in the
status line of the open Editor window and positions the cursor at the
point of the error.

Some types of errors affect code in other methods and may also affect
code for other objects. When this problem occurs, the compiler opens
each method that needs to be corrected.

The Language menu is also available as a pop-up menu from any
ObjectPAL Editor window. Right-click anywhere in the window to
display the Language menu, as shown in Figure 3-3.

The ObjectPAL Editor

Figure 3-3 The Language pop-up menu

File Edit L

BOXES::grayCircle::mouseClick
method mouseClick(var eventInfo MouseEvent) ‘ Ll
boxOne.greenCircle.Color = DarkGreen Check Syntax
endmethod Next Warning
Methods...
Object Tree -

Keywords >
Types...
L:LJ Properties...
I{‘““””‘“ gﬁa Constants... ry

Browse Sources

Deliver

In the Language menu,

3 Check Syntax compiles the code on a form.

0 Next Warning shows the next compiler warning.

0O Methods opens the Methods dialog box for the current object.
O Object Tree displays an Object Tree for the selected object.

The second group of menu items in the Language menu is designed
to provide help while you're writing ObjectPAL.

Keywords Choose Keywords to see a list of keywords, such as proc and if.
When you choose a keyword, the application inserts the keyword
into the current ObjectPAL Editor window at the cursor position.

The Types and Methods Choose Types from the Language menu to display the Types and
dialog box Methods dialog box, as shown in Figure 3-4.

Chapter 3, The ObjectPAL environment 19

The ObjectPAL Editor

20

Paradox displays the
syntax of the method
here

Figure 34 lists
Beginnerlevel types and
methods.

Displaying syntax

Learning ObjectPAL

Figure 3-4 The Types and Methods dialog box

This dialog box is extremely useful while you're writing code. The
Types section of this dialog box lists all Beginner-level ObjectPAL
types. When you select a type, the Methods section of the dialog box
lists the available methods for that type and the procedures
associated with that type.

With the type of object or variable selected, you can use the Insert
type button to insert the type name into the current ObjectPAL Editor
window. Typically, however, you use an object’s name in code. (An
object is an instance of a type, not the type itself.) The type name is
inserted when you use the Insert type button, even if you click
Cancel to close the dialog box.

When you select a method or procedure from a type, Paradox
displays the syntax (or prototype) of that method in the syntax
section of the dialog box (the unlabeled panel at the bottom of the
dialog box). With the method name selected, use the Insert method
button to insert the method into the current ObjectPAL Editor
window. If you insert a method, you’ll see the the syntax for that
method in the status line of the ObjectPAL Editor window when you
return from the dialog box.

The syntax of a method tells you what arguments the method expects
and what data type (if any) the method returns. This feature is
particularly handy while you're learning the language. If you don't
know the exact name of a method or whether a method is available
for a certain object, browse through the Types and Methods dialog
box. Also, remember that the Paradox for Windows Help system
contains entries for every ObjectPAL method and procedure.

The Display Objects and
Properties dialog box

Properties are valuable
resources.

The Constants dialog box

The ObjectPAL Editor

Choose Properties from the Language menu to open the Display
Objects and Properties dialog box, as shown in Figure 3-5.

Figure 3-5 The Display Objects and Properties dialog box

Like the Types and Methods dialog box, the Display Objects and
Properties dialog box lists all the UIObjects (display objects, such as
bitmaps and buttons).

When you select an object, all the property names for that object
appear in the Properties section of the Display Objects and Properties
dialog box. If you select a property, all the possible values for the
selected property appear in the Values section of the dialog box.

The Properties and Values sections are valuable resources while
you're learning ObjectPAL, because you can browse through all the
properties and values to see what's available.

Choose Constants from the Language menu to open the Constants
dialog box, as shown in Figure 3-6. The Constants dialog box lets you
view the various types of constants and lets you insert a constant
directly into your code.

Chapter 3, The ObjectPAL environment 21

The ObjectPAL Editor

Creating a source code
report

languagelBrowse Sources

Delivering forms to users

The Properties menu

22

ObjectPAL level

Learning ObjectPAL

Figure 3-6 The Constants dialog box

Types of
| [ActionD ataCommands +
| |ActionFieldCommands

1 Colo
| |FontAttributes

. |FrameStyles

| |General

: |LineEnds

| {LineStyles 3

Insert constant |

A constant is a value of a certain data type that does not change
throughout a program. (Variables, on the other hand, are expected to
change through a program.) Colors are constants, as are most
property settings. Run-time errors are also constants.

Typically, when you need to change an application, you open the
form, choose the object that you want to change, and then modify a
section of code. Sometimes, especially if you have a large application,
you might want to see all the code in one place.

Language | Browse Sources creates a report that shows the ObjectPAL
source code for all objects in a form.

The ObjectPAL equivalent of Language | Browse Sources is a method
called enumSource. This procedure creates a table that contains one
record for each defined method for each object in a form. The method
definitions are stored in memo fields.

Language | Deliver creates another version of the current form and
gives that version an .FDL file-name extension. Users cannot enter a
design window in a delivered form and thus cannot change source
code. Naturally, you should deliver only complete and debugged
forms.

The Properties menu in the ObjectPAL Editor lets you set properties
for the Desktop, choose a default ObjectPAL Editor window size, set
up an alternate editor, and toggle the display of compiler warnings.

Properties | Desktop opens the Desktop Properties dialog box so you
can set or change characteristics of the Desktop. For example, you can
change the title of the desktop from “Paradox for Windows” to a
custom title, such as “Inventory Control Application.”

You also choose your ObjectPAL level from the Properties | Desktop
dialog box. The Beginner level is the default; this level presents only

Note

Properties!Window Sizing

PropertieslAltemate Editor

Note

Properties!Show Compiler
Warning

The ObjectPAL Editor

the most basic ObjectPAL methods, types, and constants. This subset
of ObjectPAL is powerful enough to build full-featured applications
yet small enough to learn in a short time. Make sure the ObjectPAL
Level is set to Beginner to complete the tutorial in this manual, as
shown in Figure 3-7. (To see all ObjectPAL types and methods,
including those for advanced users, change your ObjectPAL level to
Advanced.)

ObjectPAL code executes the same, regardless of the ObjectPAL Level
setting. In other words, an application developed with the level set to
Advanced will run on a system with the level set to Beginner.

Figure 3-7 ObijectPAL Level setting

Choose your ObjectPAL
level here

Paradox opens an Editor or Debugger window to a default size. To
change this size, first open an Editor window and set it to the size
you want. Next, choose Properties | Window Sizing. In the Editor
Window Size dialog box, choose Use Current Sizing From Now On.

Properties | Alternate Editor lets you link to a different editor. With a
different editor linked, whenever you attempt to open an Editor
window, Paradox asks whether you want to use the default editor or
the alternate editor. This feature is useful because even if you want to
use another editor while you're creating code, you certainly will need
to use the default editor to debug and fine-tune your code.

Because the ObjectPAL Editor provides a great deal of language help,
you probably shouldn’t use another editor until you're familiar with
ObjectPAL.

Properties | Show Compiler Warning toggles the display of compiler
warnings.

Chapter 3, The ObjectPAL environment 23

The ObjectPAL Debugger

The ObjectPAL Debugger

The ObjectPAL Debugger is an integrated debugger, meaning that the
debugger is available to you as you are writing and developing
ObjectPAL code. Using the Debugger, you can

3 Set breakpoints so you can execute statements up to a certain
point, and then stop to see what has happened

Open a window that lists each line of code as it executes

Inspect variables to make sure that values are being manipulated
as you inteneded

0

0 Execute code one line at a time (called single-stepping)
O Step over methods and procedures that you know are bug-free

It's easier to appreciate the usefulness of the Debugger after you've
written some code. Work through the tutorial examples in the
chapters that follow, and then refer to Chapter 4 in the ObjectPAL
Developer’s Guide for a complete description of Debugger functions
and a short tutorial showing how to use the Debugger.

On to programming

The following chapters present simple lessons you can complete to
become familiar with ObjectPAL and its environment. You might
want to browse through the ObjectPAL Developer’s Guide and the
ObjectPAL Reference as you move through the examples in this book.

After completing this tutorial, you should be able to move ahead
with your own programming tasks.

24 Learning ObjectPAL

Button

Dialog box

CHAPTER 4

Programming a button

The traditional way to demonstrate how to use a new language is to
present a “Hello, world!” program. Such a program usually consists
of only enough code to display the message “Hello, world!” on the
screen. The classic “Hello, world!” program is not interactive. You
run the program, the message appears, and that’s it.

In contrast, ObjectPAL is a language for creating interactive,
event-driven applications. In the following “Hello, world!”
application, the user controls when to display the message and when
to put it away. You'll program a button to display a dialog box, but
the code executes only when the user clicks the button, and the
dialog box stays open until the user closes it. Example 4-1 shows how
to do this. First, Figure 4-1 shows the application in action.

Figure 4-1 Hello, world!

=] =
File Edit Form Record Properties Window ﬂlp ___

By adding the statement msginfo("Greetings", "Hello, world!") to the button’s built-in
pushButton method, you make the dialog box appear when you push the button.
The dialog box stays open until you close it.

Chapter 4, Programming a button 25

Built-in methods

Note To complete the examples in this manual, change your working
directory to PDOXWIN\SAMPLE.

Example 4-1 Hello, world! application

1. Begin by creating a new form. Choose FileINewlForm from the Deskiop
fo enter the Form Designer. You'll see o succession of New Form dialog
boxes. Accept the defaults in each dialog box to create a blank form.
Most of the work in building Paradox applications involves placing
objects in forms and writing ObijectPAL code to specify how they respond
to evenfs.

2. Click the Button tool o create a bution. Place the button anywhere on the
form, and don't worry about labeling it for now.

. Now run the form by clicking the View Data button or by choosing
Form|View Data.

ERIE]

4. Click the button you created and watch what happens. lts appearance
changes, making it seem to push in and pop out. You didn't write any
code, so how did this happen? By default, buttons push in and pop out
when clicked. In the following examples, you'll write ObjectPAL code to
make this button do more.

['v:"ﬂ" 5. FClick the Design button or choose FormlDesign to continue designing your
m— orm.

e

Built-in methods

Every object in a form (as well as the form itself) includes built-in
methods that execute in response to events. That is, Paradox
interprets the event and calls the appropriate built-in method
attached to the target object. For instance, when you clicked the
button, it responded; no programming on your part was necessary
because every Paradox object comes with default methods built in.

Changing the default behavior

To change the way a button behaves when you click it, you attach
your own custom code to the button’s built-in pushButton method.
Example 4-2 shows you how to open the ObjectPAL Editor.

Example 4-2 Opening an ObjectPAL Editor window

& 1 InsEect the button to view its properties. {To inspect an object, you can
% rightclick it, you can select it and press F6, or you can select it and
choose Properties|Current Object.)

26 Learning ObjectPAL

Changing the default behavior

Builtin methods define how 2. Choose Methods to display the Methods dialog box, which lists the

objects respond to events. bution’s builtin methods.
Shortcut Select the bution, and then press Ctrl+Spacebar to display the Methods
dialog box.

3. You want to define what happens when the bution is clicked, so select
pushButton from the list of methods, then choose OK. An Ob|ectPAL Editor
window opens, confaining the foflovvlng code:

method pushButton(var eventInfo Event)

endmethod

Figure 4-2 shows each of these steps.

Figure 4-2 Inspect the object, select a method, open an Editor window

r = 7
. LABEL)]
f ® #Button3 First, inspect the button and

choose Methods from its
Button Type > menu to display the Methods
e ’ dialog box
v Center Label
Design »
Run Time »
Methods...
8] Next. select pushButton to
_ Custom Methods: edit the pushButton method.
ﬁmn"m“mn' 1 - 1 and choose OK to open an
“ laction ObjectPAL Editor window
i Delete
; i iUses | Var s
i i Type . Procs x':"')
. ! Const . :
' Mew Custom Method: |] | Preo
#Button3::pushButton via . .
method pushButton(var eventInfo Event) B El(ﬂilgglvtgseeditth?hg?#]ee(;}']i)%L
endmethod -
[
[el 1 -»

As it stands, this method doesn’t do much. (If you're wondering
about var eventInfo Event, it’s explained in the “How it works” section
later in this chapter. Don’t worry about it now.) It's important to
understand that for every object you can create, and for every event

Chapter 4, Programming a button 27

Attaching your own code

that affects an object, Paradox has a default response. In some cases,
Paradox’s default response is something you can see, such as a
button moving when you click it. In other cases, Paradox’s default
response is not visible, but it’s necessary nonetheless.

It's also important to understand that the default response only
executes when the object receives an event. For example, the button
doesn’t move until it's clicked.

Attaching your own code

Shortcut

[

Copy objects from form to

28

form with the Clipboard.

Learning ObjectPAL

The next step is to attach your own code to this method. Simply
attaching code to a method does not disable the default response. Your
code executes, and then the default code executes.

Example 4-3 Attaching your own code

1. I it's not already open, open an ObjectPAL Editor window to edit the
button’s pushButton method.

2. Add code tfo the pushButton method so it looks like this:
method pushButton(var eventInfo Event)
msgInfo("Greetings”, "Hello, world!")
endmethod

3. Click the Check Syntax button (or choose LanguagelCheck Syntax) to
check your code for syntax and spelling errors. If there are errors, a
message in the status {)or informs you. Otherwise, you'll see the message
No syntax errors in the status bar and your changes are saved fo
memory.

Rightclick anywhere in the Editor window fo display the Llanguage menu.
- Click the View Data button fo run the form.
. Click the button you created to display your greefing in a dialog box.

. Choose OK to close the dialog box.

N O O b

. Return to the Form Design window, and choose FilelSave to save your
changes to disk. Name this form HELLO.FSL.

There you have it—an application that displays a message in a dialog
box when (and only when) you click a button and then waits for you
to close it. What's more, you can copy this button to the Clipboard
and paste it into any Paradox form, and it will work exactly the same
way.

How it works

Summary

Here’s how the code you wrote works:

method pushButton(var eventInfo Event)

The first line says that this is a method named pushButton, that
pushButton takes one argument, eventInfo, of type Event, and that
eventInfo is a variable passed by reference (indicated by the var
keyword). This statement (which Paradox supplies by default)
conveys important information to ObjectPAL. You don’t have to
worry about it now.

The next line calls the msgInfo procedure.
msgInfo("Greetings", "Hello, world!"™)

msgInfo is a procedure in the ObjectPAL run-time library, a
collection of pre-defined methods and procedures that operate on
objects or data of a specific type. msgInfo takes two arguments
(sometimes called parameters). The first argument, “Greetings,”
specifies the text to display in the title bar of the dialog box, and the
second argument, “Hello, world!” specifies the text to display in the
dialog box itself. This dialog box is modal; that is, it stays open until
the user closes it, and the user must close it before continuing to
work with the form.

The last line marks the end of the method.
endmethod

By default, the built-in code executes just before this line.

Summary

This lesson gave you an elementary look at what it takes to build a
Paradox application. These are the basic steps:

1. Place objects in a form. Every object comes with built-in code, so
forms will run even if you don’t write any code yourself.

2. Run the form and watch how the objects behave by default.

3. Decide which object(s) should do something different or
something more.

4. Decide what each object should do and when it should do it.
5. Attach your own code to the appropriate built-in method(s).

6. Run the form and make sure it does what you expect it to do.
Debug it if necessary.

Chapter 4, Programming a button 29

30 Llearning ObjectPAL

CHAPTER 5

Initiating and responding fo actions

The next several lessons are presented in the context of a single
application: a form for entering customer data. Lessons in this
chapter show

m}

a Q Q

How code attached to one object can affect another object
How to use the UIObject action method to initiate actions
How to use the built-in action method to respond to action

How to use the UIObject locate method to search for values in a
table

Stages in writing ObjectPAL applications

In general, ObjectPAL applications are built in the following stages:

1. Get your data together.

Build and populate tables. If you're building a multi-table
application, determine your data model before building tables.

. Create the form.

Although you can write scripts and store code in libraries, the
vast majority of ObjectPAL code is attached to objects in forms.
The best way to start is to create the form, place the objects, and
run the form. Observe how Paradox behaves by default, without
any ObjectPAL code attached. You'll find that the built-in code
does what you want in most cases. As you watch the default
behavior, you can decide which objects should do something
different or something more. Then you can move to the next stage.

. Attach ObjectPAL code to the object’s built-in methods.

Modify an object’s behavior by attaching code to the appropriate
built-in method. Built-in methods execute in response to events,

Chapter 5, Initiating and responding to actions 31

Creating the form

Note

so to select the appropriate built-in method, you should
determine what the object should do and when it should do it.

4. Test and refine the application.

Paradox makes it easy to develop an application one piece at a
time. You don’t have to code the entire application before you can
run the form and make sure things are happening as you expect.

For the purposes of this tutorial, the first stage has been completed
for you: tables have been created and populated with data. Set your
working directory to the directory containing your sample files
(usually C:-\PDOXWIN\SAMPLE) to access these tables and then
work through the examples in this tutorial.

If you've changed the sample tables, reinstall them before you work
through this tutorial. Otherwise, you might not get the expected
results from the examples in this manual. To reinstall the sample
tables, run INSTALL and check only the Install Sample Tables option.
If you're accessing the sample tables on a network, see your network
administrator.

Creating the form

32

Learning ObjectPAL

This section begins by explaining how to create a single-record form;
that is, a form that displays one record at a time from a table.
Subsequent lessons explain how to perform the following tasks:

0 Programming a button to take an action
O Responding to an action
O Searching for values

Before you begin these lessons, you need to create the form. Once
you create and save this form, you can use it to complete any of the
lessons in this chapter.

Creating the form

Example 5-1 Creating the NewCust form

I Choose FileINewlForm to display the Data Model dialog box. Make sure
you're working in the SAMPLE directory. (For help, see Chapter 4 of
Cetting Started.)

2. FAdd the Customer table 1o the data model, as shown in the following
igure:

pan [Work 3]
| Ipe: [Tabens 4

3. Choose OK to accept this data model and display the Design Layout
dialog box.

4 Choose OK to accept the default layout and display the new form (shown
here) in a design window.

Form Design : New *

Custorner No

Narme

Stieet

City

State/Prov
Zip/Postal Code
Country

Phone 2w

First Contact =g
o —r]

5 Next, use the Button tool to add thiee buttons. Place them in the form and
label them New, Find, and Print, as shown in the following figure:

Chapter 5, Initiating and responding to actions 33

Programming a button to take an action

A button’s label is just a text box. To
change the text, select the label and
change the text.

Form Design : New *

-]

Custorner No

Name New
Street
City Find

State/Prov

Zip/Postal Code Print

Country
Phone [

First Contact

D | e

A

6. Finally, choose FilelSave to save the form. Name it NEWCUST FSL.

Throughout these lessons, this form will be referred to as the NewCust
form. You can use the NewCust form as a starfing point for the lessons
that follow.

Programming a button to take an action

34

Learning ObjectPAL

In this lesson, you'll attach code to a button to initiate a specific
action: inserting a new record.

Example 5-2 Attaching code to a button

1.

Inspect the bution labeled New and change its name o newBution. To
change an obiject's name, inspect the object, and click its default name
(it's the first item in the object's menu). You'll see the Object Name dialog
box, and that's where you type the new name.

You don't have to name an object to attach code to if, but a name can
remind you what an object is supposed to do, and it provides a
convenient way to refer fo the object in conversation or text, as well as in
your code.

. Inspect newButton again to display its menu, and choose Methods to

open the Methods dialog box.

. Select pushButton, and then choose OK fo open an Editor window for the

built-in pushButton method.

. Add code to the pushButton method so it looks like this:

method pushButton(var eventinfo Event)
action(DatalnsertRecord)
endmethod

. Check your syntax and correct any errors.

How it works

Important

Programming a button to take an action

6. Run the form.

7. Click the Edit Data button (or choose FormlEdit Data, or press F9) to
switch the form into Edit mode.

8. Click newButton to insert a new, empty record. (In a later lesson, you'll
add more code to this bution to make it more useful.)

9. You can enter data info this record, or choose Record|Delete (or press
Ctri+Del) to delete it.

10. Return to the Form Design window and save the form.

When this pushButton method executes, the statement
action(DatalInsertRecord) has exactly the same effect as choosing
Record | Edit Data or pressing /Ins. In other words, this button doesn’t
do anything you couldn’t do already. However, it illustrates an
important point: a form responds the same way to an ObjectPAL
action statement as it does to a user action. In fact, as you're learning
ObjectPAL, it may be helpful to think of the form “translating” user
actions to action statements.

The basic action statement has two parts:

0 The method name, action, that refers to the action method
defined for UIObjects.

7 An ObjectPAL action constant (for example, DatalnsertRecord)
that identifies the action to perform.

The action statement is the fundamental technique for initiating an
action from ObjectPAL: write a statement that combines the action
method with a constant that specifies what to do.

Table 5-1 lists the action constants available at the Beginner level.
Understanding how to use these constants is vital to getting the most
out of ObjectPAL.

Table 5-1 ObijectPAL Beginner-level action constants

_Constant ‘Description

DatalnsertRecord Insert a record

DataDeleteRecord Delete a record

DatalockRecord Lock a record

DataUnlockRecord Unlock a record

DataPostRecord Post (commit) a record to the database
DataCancelRecord Cancel changes to a record

DataBegin Move to the first record in a table

Chapter 5, Initiating and responding to actions 35

Responding to an action

Constant Description

DatalnsertRecord Insert a record

DataEnd Move to the last record in a table

DataPriorRecord Move to the previous record in a table

DataNextRecord Move to the next record in a table

DataBeginEdit Begin Edit mode

DataEndEdit End Edit mode

DataArriveRecord Point to a new or changed record (used only to respond
to the action, not to initiate it)

FieldForward Move to the next object in the tab order

FieldBackward ~~ Move to the previous object in the tab order

Responding to an action

36

Learning ObjectPAL

It’s not enough to initiate actions: you also need to control how
objects respond. As explained in previous lessons, every object in a
form has built-in methods that will meet your needs in most cases.
Sometimes, though, you want something different or something
more. This lesson shows how to control an object’s response to a
given action.

In this lesson, the task is to control tab order, which specifies the
object that the cursor moves to when you press Tab. First, get a feel
for the way the form behaves by default.

Example 5-3 Tab default behavior

I. Run the NewCust form. The cursor (highlight) is in the first field object,
Customer_No.

2. Press Tab. The cursor moves 1o the Name field object.

3. Press Tab a few more times, and watch how the cursor moves from field
object 1o field object.

When you run a form and interact with it, you generate actions.
Pressing Tab is no exception; the result is an action, and the constant
that identifies it is FieldForward, as shown in Table 5-1. (When you
press Shift+Tab to move backward, the resulting action is
FieldBackward.)

The default tab order starts with the topmost field object and works
down. Suppose, though, that after you enter the customer number
and the name, you want to move directly to Phone, bypassing the
other field objects. Then, after you enter the customer’s phone
number, you want to move back to Street and enter address data.

Responding to an action

Using ObjectPAL, this is easy to do, once you understand two key
concepts:

A Every object in a form (including the form itself) has a built-in
action method that executes in response to actions generated by
the user, by Paradox, or by ObjectPAL.

0 To control how an object responds, attach code to the object’s
built-in action method.

Example 5-4 applies these concepts to control how the Name field
object responds when you press Tab.

Example 5-4 Controlling tab order

[‘?;‘ 1. Click the Design button {or press F8) to return o the design window.
2. Inspect Name and choose Methods to display the Methods dialog box.

3. Select action, and then choose OK to open an Editor window for the
builtin action method.

Shortcut You can also just doubleclick a method to open an bditor window.

4. Edit the method so it looks like this:

method action(var eventinfo ActionEvent)
if eventInfo.id() - FieldForward then
disableDefault
Phone.moveTo()
endlf
endmethod

5. Close this Editor window, and save the changes when prompted.
6. Inspect Phone and choose Methods to display the Methods dialog box.

7 Select action, and then choose OK to open an Editor window for the
builtin action method.

8. Edit the method so it looks like this:

method action(var eventInfo ActionEvent)
it eventlnfo.id() - FieldForward then
disableDefault
Street.moveTo()
endIf
endmethod

9 Check your syntax, and correct any errors.

10. Run the form, and then press Tab twice (o1 press Enter twice, which has

the same effect] Verify that you move to Phone.

Il Piess Tab ugan, and verify that you move 1o Street.

Chapter 5, Initiating and responding to actions 37

Responding to an action

How it works

38

line 2

line 3

line 4

Learning ObjectPAL

12. Switch 1o the Form Design window [F8) and save the form.

Each method you customized in this example now contains six lines
of code: two lines are supplied by default, four lines are custom code.
This section discusses only the custom code, starting with the code
attached to the Name field object.

The line of custom code after the default method header is
if eventInfo.id() = FieldForward then

Technically, this line tests whether the value returned by eventInfo.id
is equal to the value of the action constant FieldForward. That's a lot
to swallow in one gulp, so here’s the same information in bite-size
chunks:

0 if marks the beginning of an if...endIf block. This block lets you
execute statements only when certain conditions are met.

0 The id method operates on the variable eventInfo and returns a
value that identifies the action. Remember, eventInfo contains
information about the event that triggered the built-in method. In
this case, the event is an action, and eventInfo contains information
that identifies the action. The id method retrieves this information.

0 The returned value is compared to the value of the action
constant FieldForward. All ObjectPAL constants have predefined
values.

O If the two values are the same, the next line of code executes. That
is, the next line executes only when the returned value is equal to
FieldForward. If the returned value is anything else (for example,
DatalnsertRecord), the rest of this if...endIf block does not
execute. Instead, the default code executes, and the method is
finished.

The third line of the method is
disableDefault

disableDefault prevents the built-in code for this method from
executing. In this case, as you have seen, the default behavior is to
move the cursor to the Street field object. By calling disableDefault,
you prevent that from happening.

The fourth line of the method is
Phone.moveTo()

As you know, Phone is the name of a field object in this form. moveTo
is a method that moves the cursor to an object. So, this statement
moves the cursor to Phone.

Actions and properties

line 5 The fifth line of the method is
endIf
endIf marks the end of an if...endIf block.

The code attached to Phone is exactly the same except for the
following statement, which moves the cursor to the Street field:

Street.moveTo()

Important This simple example presents the framework for responding to
actions in ObjectPAL: attach code to an object’s built-in action
method, call eventInfo.id to identify the action, and use action
constants to test for the action or actions that you want to handle.

You can initiate and respond to actions using the same action
constants. For example, the following code uses the action constant
DataPostRecord to initiate an action.

method pushButton(var eventInfo Event)
action(DataPostRecord)
endmethod

The following code uses the same action constant to respond to an
action: if the action is DataPostRecord, the code displays a message in
a dialog box, and then allows the default code to execute and post
the record. If it’s any other action, Paradox skips to the end of the
method and executes the default code.

method action(var eventinfo ActionEvent)
if eventInfo.id() = DataPostRecord then
msgInfo("FYI", “"About to post the current record.")
endIf
endmethod

Actions and properties

Like the previous lesson, this lesson shows how to respond to an
action. In addition, this lesson shows how to work with object
properties and how to manipulate properties of one object based on
the properties of another object.

Every design object has specific characteristics and attributes, which
in Paradox are called properties. When you inspect an object, the
object’s menu lists many properties, as shown in Figure 5-1. Using
ObjectPAL, you have access to all these properties and many more.

Chapter 5, Initiating and responding to actions 39

Actions and properties

40

Note

Learning ObjectPAL

Figure 5-1 Properties of the field object Name

Form Design : NEWCUST.FSL
Custorner No
[] L] a
BName a New
[] L]
Street Define Field »
City Color 4 Find
. . Pattern »
State/Prov Frame »
Zip/Pastal Code| Word Wrap Print
Display Type » f
Country Horizontal Scroll Bar
Phone Vertical Scroll Bar =
: Design 4
First Contact Run Time » F
Methods... 1 [»

Example 5-5 shows how to use the DataArriveRecord action constant
to respond to an action that can be initated in several ways. A
DataArriveRecord action occurs whenever the form “arrives at”
(displays) a new or different record. For example, moving to the next
or previous record initiates a DataArriveRecord action, as does
inserting, deleting, or editing a record. DataArriveRecord is a useful
general-purpose action. (You can only respond to a DataArriveRecord
action; you can't initiate it.)

Suppose that, as you work with customer data, you want to highlight
the names of long-time customers—that is, customers you contacted
before January 1, 1991. The following example shows how to do this.

To work through this lesson, use the NewCust form you created
earlier in this chapter (open it in a design window).

Example 5-5 Responding to an action

1. Inspect the Name field object, and choose Methods to open the Methods
dialog box.

2. Select action, and ihen choose OK 1o opern an Editor window for the
builrin action method.

IF you worked through the previous lessons, you may find some custom
code already attached. You can either delete the previous code or
comment it out for now. To comment code, enclose it in curly braces { }.

3. Edit the method to make it look like this:

method action(var eventInfo ActionEvent)
if eventInfo.id() - DataArriveRecord then
if First Contact.Value < Date("1/1/91") then
Self.Color = Green
else
Self.Color = White
endIf

How it works

line 2

line 3

Important

Working with an object’s
properties

Actions and properties

endIf
endmethod

4. Check your syntax and correct any errors.

5. Run the form.

6. Move the insertion point to the Name field object, then scroll through the
records.

7. Notice the color of the Name field object. It should be green if the value
of the First_Contact field obiject is less than 1/1/91; otherwise, it should
be white.

This method executes whenever the Name field object responds to an
action (and it only works if you move the insertion point into Nane).
If the action is anything except DataArriveRecord, only the built-in
code executes, and Name behaves like any other field object. But
when the action is DataArriveRecord, the custom code executes and
makes Name do something special.

The second line of the method is
if eventInfo.id() — DataArriveRecord then

This statement identifies the action and tests to see if it is
DataArriveRecord, the one you're interested in.

The third line is
if First Contact.Value < Date("1/1/91") then

This statement reads the Value property of the field object
First_Contact and tests to see if it is less (earlier) than 1/1/91.

In the Customer table, the field name First Contact contains a space,
but in this form, the name of the field object First_Contact contains an
underscore. Here’s the rule: names of fields in tables can contain
spaces; names of objects in a form cannot.

Here is the basic syntax for working with an object’s properties:
objectName.propertyName

Replace objectName with the name of an object (First_Contact, in this
example) and replace propertyName with the name of a property (in
this example, Value).

The Value property lets you read and write the value of an object.
For example, the following statement puts the value 1234 into the
Customer_No field object, just as if you had typed it yourself.

Customer No.Value = 1234

Chapter 5, Initiating and responding to actions 4

Summary

Important ObjectPAL uses special syntax for working with date values. In this
example, the quotes make this an expression and tell ObjectPAL to
treat 1/1/91 as a date (otherwise, it treats the / symbol as a division
operator):

Date("1/1/91")

ObjectPAL automatically treats the value of the First_Contact field
object as a date, because it’s defined as a Date field in the underlying
table (CUSTOMER.DB).

line 4 The fourth line is
Self.Color = Green

Using the Self variable This statement uses the basic syntax for working with properties,
objectName.propertyName. The property name is Color, but what is Self?
Self is a built-in object variable that refers to the object executing the
current code.

In this statement, the object executing the code is the field object
Name (you moved the insertion point into Name in step 6 of this
exercise), so Self refers to Name.

Here, Self is a very convenient shortcut. In more complex
applications, Self is an important element in generalized code,
because it lets you operate on objects without specifying them by
name.

Summary
These lessons have presented some powerful techniques. They’ve
shown you how to

Use the UlObject action method to initiate actions

Use the built-in action method to respond to actions

Use action constants to initiate and respond to actions

Prevent default code from executing

Replace default code with code of your own

Work with object properties

Use the object variable Self

Q Q o 0 o a a

Subsequent lessons expand on these techniques and show you how
to exercise even more control over an application.

42 learning ObjectPAL

CHAPTER 6

Input and output

The lessons in this chapter show how to get information from the
user, how to display information to the user, and how to process this
information along the way.

This chapter covers the following topics:

A A quick way to get user input

O Searching for values in a table

7 Inserting a record and generating a unique key value
A Printing a report

The examples in these lessons explain how to add code to the
NewCust form you created previously.

A quick way to get user input

This lesson shows how to use the view method to display a dialog
box where a user can enter a value. It also shows how to declare and
use variables in ObjectPAL. In terms of the completed application,
this example isn’t very useful. However, it presents concepts you can
use to do something more practical.

Example 6-1 Using view to display a dialog box

1. Open the NewCust form in the design window.

2. Inspect the bution labeled Find, and change its name to findButton.

3. gelect findButton, and press Ctrl+Spacebar o display the Methods dialog
OX.

4. Choose pushButton by double-clicking it. This opens an Editor window for
the pushButton method.

5. Edit the method to make it look like this:

Chapter 6, Input and output 43

A quick way to get user input

method pushButton(var eventInfo Event)
var
userInput String
endVar

userInput = "Enter your name here."
userInput.view("What's your name?")

message("Hello ", userInput)
sTeep(1000)
endmethod

6. Check your syntax, and correct any errors.

7. Run the form, and click the Find button. A dialog box appears and

rompts you to enfer your name, as shown here:
Y Y

City

State/Prov
Zip/Postal C{

Country
Phone

First Contac

] i 2

8. Type your name into the dialog box, and press Enter or click OK.

9. A message oEpeors in the status bar at the lowerleft corner of the form’s
window, as shown here:

Paradox for Windows
File Edit Form Record Properties Window Help

Form : NEWCUST.FSL

Customer No (R
Name Kauai Dive Shnppe New

Street 4-976 Sugarloaf Hwy

City Kapaa Kaua Find

State/Prov HI

Zip/Postal Code 94766 Print

Country s A

Phone 808-555-0264 e

First Contact 4/3/90

The message appears here —— |Hello Frank i T

44 learning ObjectPAL

How it works

line 2

line 3

Note

line 4

line 6

line /

A quick way to get user input

10. Return 1o the Form Design window, and choose FilelSave to save the form.

This example accomplishes a lot with few lines of code. Following is
an explanation of each line of custom code.

The line of custom code after the built-in method header consists of a
single keyword:

var

var declares the beginning of a block where variables are declared.
(Variables are declared by specifying a name and a data type.)

The third line is
userInput String

This code declares a variable whose name is userlnput and whose
data type is String. Now you can use the variable userlnput in this
method to store a character string.

ObjectPAL does not require that you declare variables, but you gain
advantages if you do: code executes faster, it’s less prone to syntax
errors, and it’s easier to read and maintain.

The fourth line is

endVar

endVar marks the end of the variable declaration block.
The sixth line of the method is

userInput = "Enter your name here.”

This statement assigns a value to userInput. In other words, it stores
the character string “Enter your name here.” in the variable. In
ObjectPAL, you must assign a value to a variable before you use it in
another statement or expression.

The seventh line is
userInput.view("What’s your name?")

When this statement executes, the method view operates on the
variable userInput. view displays the value of the variable in a dialog
box. The string “What’s your name?” specifies the text to display in
the dialog box’s title bar.

view does more than display the value of a variable in a dialog box;
when you close the dialog box, view assigns the displayed value
back to the variable. This new value is used by the next line of
custom code.

Chapter 6, Input and output 45

Searching for values

line @

Line 10

The view dialog box can handle numeric input as well as character
strings. For example, the following code prompts you to enter a
credit card number:

method pushButton(var eventInfo Event)
var
cardNumber Number
endVar

cardNumber = 0 ; assign a temporary value
cardNumber.view("Enter the Credit Card number.™)
message(cardNumber) ; display the new value
sleep(1000)

endmethod

The ninth line is
message("Hello ", userInput)

This statement calls the System procedure message with two
arguments: the literal string, “Hello ”, and the variable userInput. In
this example, the value of userInput is whatever name you entered in
the view dialog box. If you entered the name Dolly, this message
statement would display Hello Dolly in the status bar.

The last line of custom code is
sleep(1000)

A sleep statement makes the system “sleep” (actually, it just waits)
until a specified number of milliseconds have elapsed; then it
resumes. This example specifies 1,000 milliseconds (one second) to
give you a chance to read the message.

Searching for valves

46

learning ObjectPAL

This lesson shows how to get a value from the user, search a table for
a record containing that value, and display that record to the user.
You'll use a view dialog box to get input from the user (as shown in
the previous lesson), use the locate method to search for the value,
and let the form handle the display work.

Work through the following example using the NewCust form you
created in previous lessons.

Example 6-2 Searching based on user input

1. The NewCust form should be open in a design wirdow.
2. Inspect Find, and choose Methods to open the Methods dialog box.

3. Double-click pushButton o open an Editor window for the builtin
pushButton method.

Searching for values

4. Edit the method to make it look like this:

method pushButton(var eventInfo Event)
var
custNum Number
endVar

custNum = 0
custNum.view("Enter a Customer Number:™)

if custNum <> 0 then
if not Customer No.locate("Customer No", custNum) then
beep()
message("Couldn’t find ", custNum)
sleep(1000)
endIf
endIf
endmethod

. Check your syntax, and correct any errors.

. Run the form, and click Find. A dialog box prompts you to enter a
customer number, as shown here:

Customer No

Name
Street
City
State/Prov
Zip/Postal Cod

Country USA
Phone 808-555-0269

First Contact 4/3/90

7. Type 1560 into the dialog box and press Enter or click OK to close it.
8. This number is in the Customer table, so the form displays that record.
9. Click Find again to display a view dialog box.

10. Type 1 into the dialog box and press Enter or click OK to close it.

11. This number is not in the Customer table, so Paradox beeps and the form
displays a message in the status bar.

12. Return to the Form Design window, and choose FilelSave to save the form.

Chapter 6, Input and output 47

Searching for values

How it works

48

lines 2 through 4

lines 6 and 7

line @

line 10

Important

Learning ObjectPAL

Much of this example uses elements explained in the previous lesson.
Only the new ones are discussed in detail here.

Lines two through four are

var
custNum Number
endVar

This code declares a variable named custNum to be of type Number.
The next two lines are

custNum = 0
custNum.view("Enter a Customer Number:")

This code assigns a value of 0 to custNum, displays the value in a
dialog box, and waits for you to enter a new value and close the
dialog box.

The ninth line is
if custNum <> 0 then

This code performs a simple test to see if you entered a value into the
dialog box. The previous statement assigned a value of 0 to custNum.
This statement tests the value of custNum, and if it's anything other
than 0, the next line of code executes. Otherwise, Paradox skips to the
end of the method and executes the default code.

The tenth line is

if not Customer No.locate("Customer No", custNum) then

To understand what’s happening in this statement, analyze it piece
by piece.

First, look at Customer_No.locate(“Customer No”, custNum).
Customer_No is the name of a field object in this form; it is bound to
the Customer table. locate is the name of a method. Customer No is the
name of a field in the Customer table. custNum is a variable.

This piece says, in effect, “In the Customer table, locate a record in
which the value of the Customer No field matches the value of the
variable custNum.” In other words, you use the object Customer_No to
specify the table to search, the method locate to specify the search
operation, the field name Customer No to specify which field to
search, and the variable custNum to specify a value to search for.

The field name Customer No contains a space, but the name of the
field object Customer_No contains an underscore. Names of fields in
tables can contain spaces; names of objects in a form cannot.

The basic locate statement consists of the following parts:

Inserting a record and generating a unique key value

7 An object name. Typically, this will be the name of a field object
bound to a table. That’s the easiest way to specify which table to
search.

A The method name, locate.
7 A field name.
A A value to search for.

locate starts searching at the first record in the table and continues
until it finds an exact match. If it succeeds (that is, if it finds an exact
match), the form displays that record. You don’t have to do anything
else. If the search fails, the form displays the current record.

The rest of this statement is the familiar if...then with a new element:
not. As you've seen in previous lessons, the basic if...then statement
tests for a condition to be true. When you add not, you're testing for
a condition to be false. Taken as a whole, then, this statement says, “If
you can’t find a value that matches custNum, execute the next lines of
code. Otherwise, skip to the end of the method and execute the
default code.”

lines T1 through 13 The following lines inform you when a search is unsuccessful:

beep()
message("Couldn’t find ", custNum)
sleep(1000)

The beep statement plays the system beep sound to alert the user.
The message and sleep statements are explained in Example 6-1.

ObjectPAL provides more powerful versions of locate, along with
other methods that let you search for a pattern of characters instead
of an exact match and methods that search forward and backward in
a table.

Important There are no search and replace methods in ObjectPAL; the best tool
for that kind of operation is a query. Refer to the User’s Guide for more
information.

Inserting a record and generating a unique key value

One of the benefits of using ObjectPAL is being able to automate
tasks. For example, suppose you're an order entry clerk. If you just
use the form interactively (without using ObjectPAL), you'd have to
go through the following steps to enter an order:

Chapter 6, Input and output 49

Inserting a record and generating a unique key value

50

Note

Learning ObjectPAL

1.

Choose Form | Edit Data.

2. Choose Record | Insert.

3. Enter a new, unique value into the Customer_No field object.

The last step is likely to be the most difficult, since you'd have to
keep track of the customer numbers already in the table and come up
with a unique number for each new customer.

This lesson shows how to use ObjectPAL to perform these three steps
in a single mouse click. Like the previous lessons, it uses the NewCust
form.

Example 6-3 Inserting a new record

1.

Inspect newButton (the bution labeled New), and choose Methods to
open the Methods dialog box.

. Double-click pushButton to open an Editor window for the pushButton

method.

If you worked through the previous lessons, you may find some custom
code already attached. You can either delete the previous code or
comment it out for now. To comment code, enclose it in curly braces { }.

Edit the method to make it look like this:

method pushButton(var eventInfo Event)
var
newCustNum Number
custTbl Table
endVar

action(DataBeginEdit)
action(DatalnsertRecord)
doDefault

custTbl.attach("CUSTOMER.DB")
newCustNum - custTbl.cMax("Customer No") + 1
Customer No.Value - newCustNum
action(DataPostRecord)

endmethod

Check your syntax and correct any errors

“Run the form and click newButton. The form enters Edit mode, inserts a

record into the table and a new value into the Customer_No field object.
You have a new record, ready for editing.

Return to the Form Design window and choose FilelSove to save the form.

How it works

Block 1

Block 2

Block 3

Note

Inserting a record and generating a unique key value

The code in this example is organized into three blocks. The first two
blocks use elements explained in previous lessons. The third block
introduces new elements, which will be discussed in detail here.

The first block of custom code is

var
newCustNum Number
custTbl Table
endVar

This block declares two variables: newCustNum, of type Number; and
custThl, of type Table. These variables differ slightly in their behavior.
A Number variable stores a numeric value, while a Table variable
provides a handle, something you can use in your code to refer to and
manipulate a table.

The second block of custom code is

action(DataBeginEdit)
action(DatalnsertRecord)
doDefault

This block initiates two actions and then calls doDefault to execute
the default code for these actions. The first statement, action
(DataBeginEdit), puts the form into Edit mode. If it's already in Edit
mode, this statement is effectively ignored. The second statement,
action(DataInsertRecord), inserts a new empty record, as explained
in the previous chapter. The call to doDefault executes the default
code for these actions immediately, rather than waiting until the end
of the method. It's important to call doDefault at this point, because
the default code inserts the record and readies its field objects to
receive values.

The third block of custom code is

custTbl.attach("CUSTOMER.DB")

newCustNum = custTbl.cMax("Customer No") + 1
Customer No.Value - newCustNum
action(DataPostRecord)

The first statement in this block consists of the following elements:
the Table variable custThl, the method name attach, and the file name
of the Customer table, CUSTOMER.DB.

By default, ObjectPAL looks for files in your working directory. You
can specify a different location by adding the full path name or an
alias to the file name.

As mentioned earlier, a Table variable provides a handle to a table.
This attach statement associates the Table variable custThl with the
Paradox table CUSTOMER.DB. Now, when you use custThl in this
method, you're referring to the Customer table.

Chapter 6, Input and output 51

Printing a report

Note

The second statement assigns a value to the Number variable
newCustNum. To get the value, it uses the Table variable custTbl, the
method cMax, and the Customer No field. cMax returns the
maximum value in a specified column of a table. In this example,
cMax operates on custThl, which is associated with the Customer table.
Tt checks the Customer No field of each record in the table and
returns the largest value. By adding one to that value, you're
guaranteed to have a unique value. For example, suppose cMax
returns a value of 4456. That means 4456 is the largest order number
currently in the table, so 4456 + 1, or 4457, has to be unique. This
value is assigned to newCustNum. It's important that this value be
unique, because it will be used in the key field Customer No, which
requires a unique value by definition.

The third statement assigns the value of newCustNum to the
Customer_No field object. Tt uses the Value property (discussed in
Example 5-5) to specify a value to store and display in a field object.

The last statement in this block initiates a DatalPostRecord action to
post this new record (including the new customer number) to the
Customer table.

The technique presented in this example is for single-user
applications. Chapter 12 in the ObjectPAIL Developer’s Guide presents
techniques to use in a multi-user application.

Printing a report

52

Learning ObjectPAL

This lesson shows the basic technique for printing a predesigned
report; that is, a report that has already been designed and saved to
disk. If you've worked through the previous lessons, you can use the
NewCust form for this lesson.

Example 6-4 Printing a pre-designed report

The code in this example is attached to the button labeled Print in the
NewCust form.

You'll need to create a simple report on the Customer table. Name this report
CUSTOMER RSI

Printing a report

== Para ao 0 ao S wia
File Edit Form Betqv@ Properties Window Help
| AL]8) Tul«] [w]nl

™ vl
*
Custnmer No m hoa
Name Kaua e Shoppe New
Street 4-97R Sugarlaaf Hwy o
ity Kapaa Kanal Find
State/Prov Hi
. i 476R
The Print button —§— . ZpPostalCode 94766 L pum
Country s A
Phaone ANR-554-0269
First Contact 4/3/90 3
-l | +
{10t 55 [CUSTOMER.DB] { { !

1 Inspect the button labeled Print, and change its name to printBution

2 Inspect printBution again, and choose Methods to open the Methods
dialog box.

3 Doubleclick pushButton to open an Fditor window for the pushButton
method

4. Edit the pushButton method 1o look like this

method pushButton(var eventInfo Event)
var
custRpt Report
endVar

if custRpt.open("CUSTOMER™) then
custRpt.print()
else
msgInfo("Problem”, "Couldn't open the report.")
endIf
endmethod

5. Check your syntax, and cormrect any errors

6. Run the form, and click prinButton. Paradox loads the report from disk
. and then displays the Print File dialog box. Use this dialog box fo set print
specifications, such as a range of pages and how to handle overflows,
and then click OK to send the report to the printer

7 Close the report

8 Return to the Form Design window, and choose FilelSave 1o save the form

Chapter 6, Input and output 53

Summary

How it works

Block 1

Block 2

The custom code in this method is organized into two blocks.

The first block declares a Report variable named custRpt. Like a Table
variable (discussed in Example 6-3), a Report variable acts as a
handle to a report file stored on disk.

The second block is

if custRpt.open("CUSTOMER™") then

custRpt.print()
else

msgInfo("Problem”, "Couldn’t open the report.")
endIf

The first statement in this block tries to read the report file from disk.
Paradox knows to look for a report file because you declared custRpt
to be a Report variable. By default, Paradox looks first for a file
named CUSTOMER.RSL; if no such file is found, it looks for
CUSTOMER.RDL. If it finds either file, Paradox tries to open the
report. If it succeeds, the variable custRpt becomes a handle to the
report, and the second statement, custRpt.print(), prints the report. If,
for any reason, Paradox is unable to open the report file, the code
displays a dialog box to inform you of the problem. This is the basic
ObjectPAL error-checking technique.

Summary

54

Learning ObjectPAL

Lessons in this chapter showed you how to

Use a view dialog box to get user input

Use locate to search for a value in a table

Use beep, message, and sleep to convey information to the user
Put a form into Edit mode

Insert a new, empty record

Get the largest value in a column of a table

Assign a value to a field

0 29 a a a a a a

Print a report

CHAPTER 7

Validating data entry

The lessons in this chapter present techniques for making sure users
enter valid data. They show how to

0 Use the validity checks built into Paradox
0 Use ObjectPAL to ensure field validity
0 Use ObjectPAL to ensure record validity

The first few lessons use a new form. Example 7-1 describes how to
create it.

Creating a multi-table form

In this lesson you will create a multi-table form (a form that displays
data from more than one table).

Example 7-1 Creating a multi-table form

1. Choose FileINew!Form to display the Data Model dialog box.
2. Add the Customer; Lineitem, and Orders tables to the data model.

3. In this form, Orders is the master table. Link Orders to Lineitem as shown:

Chapter 7, Validating data entry 55

Creating a multi-table form

56

Learning ObjectPAL

I |1STOCK DB _
| |VENDORS DB

| L
Path: [WORK +] .
| Ipe: [Taben]3]

i : ders.db = _lineitem.db_|
| [CONTAGTEDE | oders.db imeitem db |
~ g?ﬁc?%ns‘“ : Cmgtgggﬂmev.db i

' IVENDORS.DB

| Path: | WORK. :i

4 o : L
g TIype: [<Tables> pin - : - L

| |

Choose OK to accept this data model and display the Design Layout
dinlog box

In the Design layout diolo? box, uncheck the Fields Before Tables option
in the Object layout panel This makes it easier to see all the objects in
this form

Choose OK 1o accept the layout and display the new form in a design
window

This application doesn't use all the fields in these tables. It uses the table
frame bound to lineitem, the Name field object bound to Customer, and
the Order_No, Customer_No, and Sale_Date field objects, all bound to
the Orders table. Delete the other field objects, and arrange the remaining
objects to make your form look like this:

Fields from Customer -
and Orders

Lineitem table object -

The Tab Stop property 9.

Creating a multi-table form

Form Design : New *

g RO TYETTTOTIT

Custorner No Name

Order No Sale Date

[Stock No Selling Price Ji Qty Total
LINEITEM Sto | LINEITEM Sell] LINEITEM Oty || LINEITEM Tot: -

| [2]

Shiftrclick the following field objects. Customer_No, Order_No, and
Name. When you have all thiee field objects selected (as shown in the
next figure|, inspect any one of them 1o view their properties. Choose Run
TimelTab Stop to uncheck the Tab Stop property. By J()m\g this, you set
the Tab Stop property for all three fields at once.

= ‘ Form Design : New *
EARLASARRARS AaAN FRAS Anse RaRS AaAe i
D
B ystamer No]
= aE a
& Order No » Sale Date
[] = L o
Stock Mo Selling Prce Uty Tutal
LINEITEM Sto || LINEITEM Sell| LINEITEM Gty LINEITEM Tot: -
1 - — 3|
L H N

Unchecking the Tab Stop property prevents the user from moving the
cursor into any of these fields. This gives you more control over the
application, because it keeps the user from entering spurious data info
these fields. Don't change tﬁe lub Stop pioperty of Sale_Date, because
you'll need to enter data into it in the next lesson.

Next, use the Bution tool to add three buttons. Place them in the form and
lubel thein New, Find, and Print. as shown next:

Form Design : New *

[+
Custorner No Narne 7
UOrder No Sale Date
Stock Mo || Selling Prce | Gty Total
e

LINEITEM Sto || LINEITEM Sell] LINEITEM Qty[LINEITEM Tot:
— Find

+]

i

o]

Chapter 7, Validating data entry 57

Using built-in validity checks

11. Choose FilelSave to save the form. Name it ORDERS.FSL. Throughout the
following lessons, this form will be referred to as the Orders form.

Using built-in validity checks

Paradox’s built-in validity checking functions are powerful. Learn to
use them interactively, as described in the User’s Guide—you can
significantly reduce the amount of code you have to write to build a
solid application. Following is a very simple example that just
scratches the surface.

Example 7-2 Built-in validity checking

1. When the Orders table was created, Sale_Date was defined to be a
Date field. Therefore, Paradox will reject any value that is not a valid date
from January 1, 100 to December 31, 9999. To see this kind of validity
checking in action, run the Orders form.

. Press F9 to enter Edit mode.
. Move to the Sale_Date field object.
. Enter abc.

o A W N

_That's not a valid date, so the form displays an error message in the status
bar, as shown in the next figure. This happens because Paradox’s builtin
validity check encountered an error.

do v]a

a 0
File Edit Form Record Properties Window Help

Customer No 1221 Name : Kauai Dive Shoppe 4
Order No 1001 Sale Date
Stock No Selling Price Gty Total

1313 $250.00 4 $1,000.00
3340 $395 00 16 $6,320.00

6. Choose EditlUndo to restore the original (valid) date.

58 Learning ObjectPAL

Adding validity checks with ObjectPAL

Adding validity checks with ObjectPAL

k=] &

O © N O

How it works

line 2

Powerful as Paradox’s built-in validity checks are, there will be times
when you need more control. For example, it may not be enough that
the value of the Sale_Date field object be a valid date.

Suppose you want to prevent the user from entering a date in the
future; that is, whenever the user enters a date, you want to make
sure it’s not later than the current date. The following example shows
you how to perform more specific validity checks.

Example 7-3 ObjectPAL validity checking

1. Return to the design window.

2. Inspect the Sale_Date field object, and choose Methods to display the
Methods dialog box.

3. Doubleclick canDepart to open an Editor window for the buillin canDepart
method.

4. Edit the method to look like this:
method canDepart(var eventInfo MoveEvent)
if Self.value > today() then
eventInfo.setErrorCode(CanNotDepart)
message(“Sale Date can’t be later than today’s date.")
sleep(1000)
endIf
endmethod

5. Check your syntax, and correct any errors.

. Run the form and enter Edit mode.
- Move to Sale_Date, type in a future date, and press Enter .
. look for the message in the status bar.

. Choose EditlUndo to restore the original date.

Every object has a built-in method named canDepart. In effect,
canDepart asks for permission to move the cursor off of the object.
By attaching custom code to a field object’s canDepart method, you
can prevent the user from leaving the field object until it contains a
valid value.

The second line of the method is
if Self.Value > today() then

The main elements in this statement are the object variable Self, the
Value property, and the run-time library procedure today. In this

Chapter 7, Validating data entry 59

Supplying values

line 3

Important

Lines 4 and 5

example, the tield object Sule_Date is executing the code, so Self refers
to Sale Date.

today returns the current date, according to your computer’s internal
clock.

Taken as a whole, this statement compares the value stored in

Sale Date with the current date. If Sale_Date is greater, the next line of
custom code executes; otherwise, execution skips to the end of the
method.

The third line is
eventInfo.setkrrorCode(CanNotDepart)

This statement uses the setErrorCode method defined for the
MoveEvent type to store information in the variable eventlnfo. In this
statement, setErrorCode uses the ObjectPAL constant CanNotDepart
to indicate an error—-here, the error is a date in the future, and the
CanNotDepart constant stores information in eventlnfo. When it’s
stored in eventlnfo, this information is available to Paradox, and
Paradox can respond to it. The response in this case is to prevent the
cursor from leaving the field object until the user enters a value that
meets the specified criteria.

The basic technique for announcing an error condition is to use
setErrorCode and an error constant. Doing so adds information to the
eventinfo variable, which Paradox can then respond to. For a complete
list of ObjectPAL constants, refer to Appendix G in the Object PAL
Reference.

The fourth and fifth lines are

message("Sale Date can’t be later than today’s date.")
sleep(1000)

The message statement displays an error message in the status bar,
and the sleep statement causes a delay so you have time to read it.

Supplying values

60

Learning ObjectPAL

Sometimes, the best way to get valid data is to provide it yourself. In
the previous chapter, Example 6-3 showed how to generate a unique
order number and put it into a field object, thus relieving the user of
that responsibility. Another way to make the user’s life easier is to
use ObjectPAL to perform calculations whenever possible. This lesson
shows one approach.

As shown in Figure 7-1 and kxample 7-4, the Orders form contains a

table frame bound to Lineitem. 1t contains records consisting of the
following tield objects: Stock No, Selling Price, Qty, and Total. For each

Supplying values

line item, the value of 1otal is the product of the values of
Selling_Price and Qty.

Figure 7-1 The Orders form

Form Design : ORDERS.FSL

=

Custurner No Narne

Urder No Sale Date
Stoch No_J SellogPrce | oty | Tow] [o

LINEITEM Sto{LINEITEM Sel)fLINEITEM Qty] LINEITEM Tot: -

_“' I Print I

The Selling_Price The Qty field object
field object

The following steps show how to use ObjectPAL to perform this
calculation.

Example 7-4 Performing calculations

I Retuin o the design window.

2 Inspect Selling_Puce, and choose Methods to open the Methods dialog

box.

3 Double click changeValue 1o open an tditor window for the builtin
changeValue method.

4 kdit the method to look like this:

method changeValue(var eventlnfo ValueEvent)
doDefault
if not Qty.isBlank() then
lotal.Value - Selt.value * Qty.Value
endlf
endmethod

5 Ispect Q. und chovse Methods 1o open the Methods didlog box

6 Double click changeValue 1o open un tditor window for the builtin
changeValue 11ethod

Chapter 7, Validating data entry

61

Supplying values

& ®

How it works

62

line 2

Learning ObjectPAL

7. Edit the method to look like this:

method changeValue(var eventInfo ValueEvent)
doDefault
if not Selling Price.isBlank() then
Total.Value = Self.Value * Selling Price.Value
endIf
endmethod

8. Check your synfax, and correct any errors.

9. Run the form, and enter Edit mode

10. Enter different values into Selling_Price and Qliy 1o see that ObjectPAL is
doing the calculation.

11. Refurn fo the Form Design window, and save the form.

This example uses code attached to two objects: Selling_Price and Qty.
The code is attached to each object’s built-in changeValue method.

Field objects have a built-in method named changeValue. In effect,
changeValue asks for permission to post the value of the field object
to the underlying table. By attaching custom code to a field object’s
built-in changeValue method, you can specify how to respond when
the user changes its value. The code attached to these objects is
almost identical. The following discussion analyzes the code attached
to Selling_Price, then discusses differences in the code attached to Qty.

The second line of the method is
doDefault

A call to doDefault executes the default code for this built-in method
immediately, instead of waiting until the end of the method. In the
case of changeValue, calling doDefault gives you access to the
updated value of the field object. For example, if you're entering a
selling price for a new record, ObjectPAL doesn’t have access to that
value until the default changeValue code executes. Or suppose
you're editing an existing order, and you change the existing selling
price from $12.95 to $14.99. Until the default changeValue code
executes, ObjectPAL will use the old price.

You can watch this happen by attaching the following code to
Selling_Price’s changeValue method:

method changeValue(var eventInfo ValueEvent)
msgInfo("Before calling doDefault", Self.Value)
doDefault
msgInfo("After calling doDefault"”, Self.vValue)
endmethod

Run the form, switch to Edit mode, and enter a value into
Selling_Price. Dialog boxes display Selling_Price’s value before and

Line 3

Line 4

Handling key violations

after calling doDefault. Enter another value and watch the dialog
boxes display the old value first and then the changed value.

The third line calls the run-time library method isBlank to operate on
Qty. isBlank returns True if the field object is blank (empty); if the
field object has a value, isBlank returns False. In this example, there’s
no point in doing the calculation if Qty is blank, so execution skips to
the end of the method.

The fourth line is
Total.Value Self.Value * Qty.Value

This code does the calculation. It multiplies the value of Selling_Price
(represented by the object variable Self) by the value of Qty, and
assigns the result to the Value property of Total.

The code attached to Qty’s built-in changeValue is like a mirror
image of the code just discussed, with the following differences:

7 It checks to see if Selling Price is blank before performing the
calculation.

7 The object variable Self refers to Qty. Remember, Self refers to the
object to which the currently executing code is attached.

Handling key violations

Single-record forms

Previous lessons have shown how to check validity at the field level
(that is, how to check the values of individual fields). This lesson
presents techniques for record-level validation. Specifically, it shows
how to catch key violations.

There are two parts to this lesson. First, you'll work with the NewCust
form to learn how to catch key violations in a single-record form.
Then you'll work with the Orders form to do the same thing on a
multi-table form.

In previous lessons, you worked with individual objects contained in
a form. This lesson introduces the form as a design object. Here,
you'll see how the form manages the objects it contains and how it
oversees events and actions.

Chapter 7, Validating data entry 63

Handling key violations

Example 7-5 A form as manager

First, open NewCust in the design window, and work through the following
sfeps.

| Choose PropertiesIFormIMethods o open the Methods dialog box. This
dialog box lists the form's builtin methods.

Shortcut You can inspect a form by rightclicking the form windows fitle bar or by
pressing Esc until all other objects are deselected and then pressing F6.
You can inspect a form

by right-clicking the [2Formi
form window’s title bar ‘

Form Design : NEWCUST.FSL

Window Style...
|V Horizontal Scroll Bar
1 v Vertical Scroll Bar
Size To Fit
Methods...

New

City Find

State/Prov

ZipdPostal Code i
Zip/Postal Code Print

Country

Fhane [
First Contact

L I s

&

2. Double<lick action to open an Editor window for the form’s builtin action
method.

Builtin methods at the form level have some additional default code in the
window. This code is provided for advanced ObjectPAL programmers and
is discussed in the ObjectPAL Developer's Cuide; don't worry about it now.

3. Edit the method to make it look like this:

method action(var eventInfo Actiontvent)
if eventInfo.isPreFilter() then
; code here executes for every object in the form

else
. code here executes just for the form itself
if eventInfo.id() - DataUnlockRecord or
eventInfo.id() DataPostRecord then
doDefault

if errorCode() peKeyViol then

msgInfo("Problem", "Enter a different Customer No.")
endIf

endlf
endlf
endmethod

4. Check your syntax and correct any erors.

5. Run the form, and enter Edit mode [this locks the record)

64 Learning ObjectPAL

Handling key violations

6. Edit the first record as follows: Change the value of Customer_No to
1351. Because this number is already in the table, using it here will cause
a key violation and trigger an error when you do the next step.

7. Press F9 to end Edit mode (and unlock the record). Your code responds to
the key violation error: a dialog box opens and displays a message

telling you to enter a different customer number. The form does not exit
Edit mode.

8. Choose OK to close the dialog box.
9. Press Ctrl+F5 to post the record (without unlocking it].
10. The dialog box opens again. Choose OK to close it.

11. Choose Record|Cancel Changes (or press Alt+Backspace) to restore the
field object's original value.

2] 12 Retun fo the Form Design window, and then choose FilelSave fo save the
pan form.
How it works What you've just seen is the form acting as a manager. As you

interact with objects in the form, you generate events and initiate
actions. These go to the form first, and the form decides what to do
with them. In this example, the form tests for two specific actions:
DataUnlockRecord and DataPostRecord. When it receives one of
these actions, the form checks for a key violation and informs you if
one occurs. In the context of this lesson, the interesting code begins
with line 7.

lines 7 and 8 Lines 7 and 8 are

if eventInfo.id() = DataUnlockRecord or
eventInfo.id() = DataPostRecord then

This is really just one statement broken into two lines for readability.
It calls the id method to identify the action. If the action is either
DataUnlockRecord or DataPostRecord, subsequent lines execute to
test for a key violation.

A DataUnlockRecord occurs when you try to unlock and post a
record for any reason: ending edit mode, moving to the next or
previous record, inserting a record, deleting a record, and so on.

A DataPostRecord occurs whenever you try to post (commit) a record
to the underlying table and still keep the record locked.

line @ Line9is
doDefault

As explained in a previous lesson, doDefault executes the default
code for a built-in method. In this example, it executes the default

Chapter 7, Validating data entry 65

Handling key violations

Lline 10

line 11

Summary

Multi-table forms

66

Learning ObjectPAL

code for unlocking a record or posting a record. If it fails for any
reason, it returns an error code to tell you what happened.

Line 10 is
if errorCode() = peKeyViol then

This statement uses the run-time library procedure errorCode to test
the error code returned by doDefault. It uses the ObjectPAL error
constant peKeyViol to test for a specific error: a key violation. As it
does for actions, ObjectPAL provides constants for common error
conditions.

Line 11 is
msgInfo("Problem”, "Enter a different Customer No.")

This statement displays a dialog box telling you to enter a different
customer number. Why? Because the Customer table has only one key
field, Customer No. So, if there’s a key violation, it must be because
of a duplicate customer number.

This example showed how to trap for key violations on a
single-record form and introduced the form as a design object that
manages events and actions for the objects it contains. Everything
goes to the form first, so the form can respond to actions on behalf of
other objects.

This example also showed you how to
0 Use errorCode to get information about errors

0 Use error constants to identify specific errors

Example 7-6 shows how to catch key violations in the detail set of a
multi-table form. Use the Orders form to work through it. As shown
previously in Example 7-4, the Orders form contains field objects and
a table frame. Example 7-5 showed how to catch key violations on a
single-record form; you can use the same technique to catch key
violations on the field objects in a multi-table form too.

However, in the Orders form, the field objects have their Tab Stop
property turned off, which prevents the user from moving the cursor
into them. Because you can’t move the cursor into these field objects,
you can’t edit them either, so these field objects can never cause a key
violation.

You can edit the field objects in the table frame, though, so this form
needs a mechanism to handle key violations at that level.

The closer-is-better principle

Handling key violations

You could use the technique presented in the first part of this
lesson—that is, you could attach code o the form’s built-in action
method and test for an error after a DataUnlockRecord or a
DataPostRecord action. However, as a general principle, it's a good
idea to keep code as close as possible to the object it operates on. Doing
so makes your code modular, object-oriented, and easy to maintain
and reuse.

In a single-record form like NewCust, the only place to handle key
violations is on the form. In a multi-table form like Orders, you have a
choice: attach the code to the form, or attach it to the table frame. If
you think of the form as the manager of all the objects it contains,
you can then think of a table frame as a second-level manager: it only
manages the field and record objects it contains. The form sees every
event and action for every object in the form; the table frame only
sees the events and actions for the objects it contains. Applying the
closer-is-better principle, the best place to attach the code is to the
table frame.

Example 7-6 Handling key violations in a multi-table form

1. Open the Orders form in a design window, and inspect the LINEITEM
table frame.

2. Choose Methods, and then choose action to open an Editor window for
the table frame’s builtin action method.

3. Edit the method to make it look like this:

method action(var eventInfo ActionEvent)
if eventInfo.id() = DataUnlockRecord or
eventInfo.id() = DataPostRecord then
doDefault
if errorCode() = peKeyViol then
msgInfo("Problem”, "Enter a different Stock No.")
endIf
endIf
endmethod

4. Check your syntax, and correct any errors.

5. Run the form, and enter Edit mode (locking the record).

6. Move the cursor to the second record in the table frame. Change the
value of Stock No to 1313 (making the stock number for the second
record the same as the stock number for the first record). This causes a
key violation.

7. Press F11 to move to the first record (and unlock the second record). A
dialog box opens and displays a message telling you to enter a different
stock number. The cursor d%es not move fo the previous record. (You could
have pressed F9, as in the previous example, and seen the same results.)

8. Press Enter to close the dialog box.

Chapter 7, Validating data entry 67

Summary

How it works

9. Press Ctrl+F5 to post the record without unlocking it.

10. The dialog box opens again. Press Enter to close it.

11. Press Alt+Backspace (or choose Record|Cancel Changes) to restore the

field object's original value.

12. Return to the Form Design window, and choose FilelSave to save the

form.

This code is identical to the code in Example 7-5, with two exceptions:

)

0

It doesn’t include the default text provided for form-level built-in
methods.

The dialog box tells you to enter a different stock number rather
than a different customer number.

Everything else works exactly the same; it’s just happening at a local
level because the code is attached to the table frame instead of the
form.

Summary

68

Learning ObjectPAL

This chapter presented techniques for record-level validity checking.
The lessons showed you how to

a o a a

Respond to the actions that can cause a key violation
Catch key violations in single-record forms

Catch key violations in multi-table forms

Use the form to manage the objects it contains

Use a table frame as a second-level manager to manage only the
field and record objects it contains

Apply the closer-is-better principle to decide where to attach your
code

CHAPTER 8

Controlling another form

The lessons in this chapter show you how to use ObjectPAL to
control one form from another form. The examples present
techniques for using a form as a dialog box, but you can apply what
you learn to any multi-form application. In these lessons, the Orders
form is the calling form; that is, the Orders form calls (opens) a second
form (the dialog box)—which in these lessons is the Cust form.

Example 8-1 and Example 8-2 show you how to make a form into a
dialog box; Example 8-3 shows you how to call and manage a dialog
box.

Designing a dialog hox

A dialog box is just a form with a few special properties set. To
design a dialog box, simply design a form, and then set the
appropriate properties, as shown in the following examples.

Example 8-1 Designing a dialog box

1. Choose FileINewlIForm to open the Data Model dialog box.

2. Choose CUSTOMER.DB from the list of tables, and add it to the data
model.

3. Click OK to close the Data Model dialog box. The Design layout dialog
box opens.

4. Click OK to accept the default layout.

Chapter 8, Controlling another form 69

Designing a dialog box

5. Use the Bution tool fo place two buttons, as shown in the following figure:

Form Design : New *

Customer No

Name
Street : oK

City

State/Prov

Zip/Postal Code Cancel

Country

Phane frud

First Contact : .

ap 1 +

6. label one button OK, and change its name 1o okButfon.
7. Label the other button Cancel, and change its name to cancelButfon.
8. Save the form and name it CUST.FSL.

So far, you haven’t done anything different than you would to design
an ordinary form. Example 8-2 shows you how to set this form’s
properties to make it look and behave like a dialog box.

Example 8-2 Sefting a form'’s properties

1. Choose Properties|FormlWindow Style io open the Form Window
Properties dialog box {shown in the following figure).

2. Check and uncheck boxes as necessary to make the dialog box match
the one shown above. If's important to set properties exactly as shown
here; otherwise, the dialog won't behave as expected.

70 learning ObjectPAL

Managing a dialog box

3. Choose OK fo close the dialog box. You won't see any changes to the
form; they take effect after you run the form.

4. Choose FilelSave to save these changes.
That's all there is to it. You're finished designing the dialog box. The next
step is fo attach code to the buttons.

5. Attach the following code to okButton's builtin pushButton method.

method pushButton(var eventInfo Event)
formReturn("0K")
endmethod

6. Attach the following code to cancelButton’s builtin pushButton method.

method pushButton(var eventInfo Event)
formReturn("Cancel")
endmethod

Both methods do the same thing: return a value and program control to
the calling form. They're discussed in more detail under the “How it
works” section in the next lesson.

7. Close the form and save your changes.

Managing a dialog box
This lesson describes how to manage a dialog box (or any other form
you want to control using ObjectPAL). It shows how to
0 Open and display the dialog box
0 Get a value from the dialog box
3 Close the dialog box

This lesson uses the Orders form as the calling form; it will call the
Cust form. The code that calls the dialog box is attached to the button
labeled New. When you press the New button, this code inserts a new,
empty record, generates a unique order number, then opens the Cust
form. This lesson also uses the Cust form to enter or retrieve data for
the customer and to return values to the calling form.

Figure 8-1 shows the two forms in action.

Chapter 8, Controlling another form 71

Managing a dialog box

72

Learning ObjectPAL

Figure 8-1 Orders as the calling form

Customer No : Name : Kauai Dive Shoppe

_S3le Date _L3/0

Order No :

L ug;{c] ":.,c ; [)a ta p———

Customer No - [N ENEEEERE

Name : Kauai Dive Shoppe

Street 4-976 Sugarloaf Hwy

City : Kapaa Kauai :
State/Prov : HI ‘ Oamd]
Zip/Postal Code : 94766
Country : U.SA

Phone : 808-555-0269

First Contact : 4/3/90

The first step is to write the code that calls the dialog box. In this
lesson, the code is attached to the New button in the Orders form.
Example 8-3 walks you through the steps.

Example 8-3 Managing a dialog box

1. Open the Orders form in the design window.
2. Inspect the button labeled New, and change its name to newButton.

3. Inspect newButton, and choose Methods to display the Methods dialog
box.

4. Doublelick pushButton to open an Editor window for the builtin
pushButton method.

5. Edit the method to look like this:

method pushButton(var eventInfo Event)
var
newCustNum Number
ordersTbl Table
newCustDlg Form
dlgval String
endVar

action(DataBeginEdit)

action(DatalnsertRecord)
ordersTbl.attach("ORDERS.DB")

Order_No.Value = ordersTbl.cMax("Order No") + 1
action(DataPostRecord)

Note

How it works

line 5

line 15

line 16

Managing a dialog box

if newCustDlg.open("cust") then
dlgVal = newCustDlg.wait()
if digval = "0K" then
Customer_No.Value = newCustD1g.Customer No.Value
endIf
newCustD1g.close()
else
msgInfo("Problem”, "Couldn’t open the dialog box.")
endIf
endmethod

6. Save the form and run it.

7. Click newButton to insert a new record, generate a new order number,
and open the dialog box.

8. Use the dialog box to enter data for a new customer or find data for an
existing customer. VWhen you're finished, click the OK bution.

You have to use the keyboard to scroll through records. Dialog boxes
don't respond to Paradox’s menus or SpeedBars.

9. After the dialog box closes, verify that Customer_No contains a new value.

The code is organized into three blocks. The first block declares
variables, the second block inserts a new record with a unique order
number (using the technique described in Example 6-3), and the third
block manages the dialog box.

In the first block, line 5 is
newCustDlg Form

This line declares the variable newCustDIg to be of type Form. Like
the Table and Report variables described in previous lessons, a Form
variable provides a handle. Here, newCustDIg is a handle to the
dialog form whose file name is CUST.FSL.

Line 15, the first line in the third code block, reads
if newCustD1g.open("cust") then

This statement tries to load CUST.FSL (or CUST.FDL, if CUST.FSL is
not found) from disk and run the form. If it succeeds, the next line of
code executes. If it fails for any reason, execution skips to the else
clause, and a dialog box tells you about the problem.

Line 16, the next line in the third block, reads
dlgVal = newCustDlg.wait()

This statement says, in effect, “Suspend execution of this method, and
wait for newCustDIg to return a value. Then assign the value to the
variable dlgVal, and resume execution.”

Chapter 8, Controlling another form 73

Managing a dialog box

74

Important

lines 17 through 19

Important

Lline 20

Learning ObjectPAL

A wait statement gives control to the specified form (in this case, it's
the dialog box represented by newCustDIg). While the calling form is
waiting on the called form, only the called form will respond to
events. In other words, the called form is modal.

How does the called form return control? The answer is a
formReturn statement. In Example 8-2, you attached the following
code to the built-in pushButton method of the OK button in the
dialog form.

method pushButton(var eventInfo Event)

formReturn("0K")
endmethod

This code returns control and a value of “OK” to the calling form.
Lines 17 through 19, in the third block, read

if digval = "OK" then
Customer_No.Value = newCustD1g.Customer No.Value
endIf

These lines test the value of digVal, the value returned by the dialog
box. If digVal is “OK,” it means the user clicked the OK button in the
dialog box. The following statement gets the value of the

Customer_No field object in the newCustDIg form and assigns it to the
Value property of Customer_No, a field object in the calling form.

The following pseudocode shows how to get a value from an object
in another form.

objval = formVar.objectName.Value

In this example, objVal is a variable that stores the value, formVar is a
Form variable (a handle to the other form), objectName represents the
name of the object you're intrested in, and Value specifies the Value
property.

Line 20 is

newCustDlg.close()

This statement closes the dialog box and removes it from the display.
Without a close statement, you’d open a new copy of the dialog each
time this method executed.

Summary

Summary

The lessons in this chapter introduced the basic techniques for
managing a multi-form application. They showed you how to

0

0

0

a

Create a dialog box by setting special form properties
Call one form from another form

Use a wait statement to suspend execution in the calling form and
wait for the called form to return a value

Get values from the called form

Close the called form

Chapter 8, Controlling another form 75

76 learning ObjectPAL

CHAPTER @

Working outside the data model

This chapter is for programmers who want to sample one of the more
advanced features of ObjectPAL. It shows how to work with tables
that aren’t included in a form’s data model—without displaying them.

Using the Orders form as an example, when you place an order for a
number of items, you need to be sure there are enough of those items
in stock. If there are enough, then you need to subtract the quantity
you ordered from the quantity in stock. You could add the Stock table
to the form’s data model, place the appropriate field objects in the
form, and work with them directly. However, you may face situations
in which you don’t want to do this—perhaps to keep the form simple
and uncluttered or to prevent the casual user from gaining access to
sensitive data. In such situations, an excellent alternative approach is
to use a TCursor.

What is a TCursor?

Important

A TCursor is a pointer to the data in a table, a pointer that enables
you to manipulate data at the table level, record level, and field level
without having to display the table. When you use a TCursor, you
aren’t working with a clone or a copy of the table; editing the records
in a TCursor changes the underlying table, and any locks on the table
affect the TCursor.

The SpeedBar has no tool for creating a TCursor as it does for
creating a table frame. A TCursor is purely a programming construct;
in fact, it is ObjectPAL’s principal construct for working with tables.

The relationship of a TCursor to a table is like that of a text cursor to
a word-processor document. In a word processor, the text cursor
points to one letter at a time, can move anywhere in the document,
and specifies where editing takes place. Similarly, when you open a
TCursor onto a table, the TCursor points to the current record, can
move to any record in the table, and specifies which record to edit. In

Chapter 9, Working outside the data model 77

Using a TCursor

addition, you can use a TCursor to perform many table-level
operations.

By declaring a TCursor variable and making it point to a table, you
can use the TCursor to edit the table without actually displaying the
table. Using a TCursor to edit a table is like using a remote control to
change channels on a television. When you press a button on the
remote control, the television changes channels. When you edit a
record in a TCursor, the record in the underlying table changes.

Using a TCursor

The following examples show how to use a TCursor to maintain the
Stock table from within the Orders form. You can use the Orders form
you created in a previous lesson. This lesson uses the same basic
validity checking technique presented in Example 7-3: code attached
to a field object’s built-in canDepart method checks the object’s Value
property and keeps the cursor on the field until the user enters an
acceptable value.

Figure 9-1 shows where to attach the code.

Figure 9-1 Attaching code to the Qity field object in LINEITEM

Form Design : ORDERS.FSL

- 3
Customer No Name : =

Order No : Sale Date

Stock No_ || Selling Price || __ Qty Total '
) | — - New |
The Qty field - HNEFFER Stol NEREM-Sel LINEITEM Gty] LINEITEM Tat:

object in LINEITEM

ITF | *

Example 9-1 Using a TCursor

1. In the LINEITEM table frame, inspect the field object named Qty, and
choose Methods to open the Methods dialog box.

2. Double-click canDepart io open an Editor window for the builtin
canDepart method.

3. Edit the method to look like this:

method canDepart(var eventInfo MoveEvent)
var
stockTC TCursor
qtyOnHand, qtyOrdered Number
endVar

78 Learning ObjectPAL

Using a TCursor

stockTC.open("STOCK.DB")
stockTC.locate("Stock No", Stock_No.Value)
qtyOnHand = stockTC.Qty
qtyOrdered = Self.Value

if qtyOrdered < gqtyOnHand then
qtyOnHand = gqtyOnHand - qtyOrdered
stockTC.edit()
stockTC.Qty = gtyOnHand
stockTC.endEdit()

else
msgInfo("Not enough in stock”,

"Only " + String(qtyOnHand) + " on hand."™)

eventInfo.setErrorCode(CanNotDepart)

endIf

endmethod

Eg 4. Check your syntax, and correct any errors.

5. Run the form, and then press F9 to enter Edit mode.

6. Move to the Qity field in the LINEITEM table frame, and enter a large
number for the quantity (a number greater than 100 should do it). The
dialog box will open and fell you to enter a smaller quantity.

How it works The code in this method is organized into three blocks. The first block
declares variables, the second block opens a TCursor onto the Stock
table and reads the value of the Qty field, and the third block updates
the Stock table or displays a message in a dialog box, depending on
how many items are in stock.

line 7 The seventh line is
stockTC.open("STOCK.DB")

This statement opens the TCursor stockTC onto the Stock table. Now
this method can use stockTC to work with data in the Stock table. By
default, when you open a TCursor, it points to the first record in the
underlying table.

lines 8 and @ The eighth and ninth lines are

stockTC.locate("Stock No", Stock No.value)
qtyOnHand = stockTC.Qty

Line 8 uses the locate method to search the Stock table for the stock
number in the current record of the LINEITEM table frame. The
locate method you use on a TCursor is not the same locate you use
to search a table frame, but they behave the same way. As described
in Example 6-2 of Chapter 6, when locate searches a table frame and
succeeds, the form moves to that record and displays it in the table
frame. Similarly, when locate searches the TCursor’s table and
succeeds, the TCursor moves to the record where the value was
found.

Chapter 9, Working outside the data model 79

Using a TCursor

For example, suppose you're ordering 10 units of the item whose
stock number is 3340, as shown in Figure 9-2. In this case, the locate
method would search the Stock table for a value of 3340 in the Stock
No field.

When locate finds the value, the TCursor moves to point to that
record. (If, for example, locate finds the value 3340 at record 30 of the
Stock table, stockTC would move to point to record 30.)

Important ~ As the TCursor moves around in the underlying table, it does not
affect the current record displayed in the form. For example, in
Figure 9-2, the form displays record 2 of 2 in the table frame. It will
continue to display this record, regardless of which record the
TCursor points to.

Figure 9-2 Record displayed during TCursor locate

Customer No : 1221 Name : Kauai Dive Shoppe
Order No : 4/3/88

Sale Date :

Stock No Selling Price Qty Total

Stock No field of 1313 $250.00 4 $1,000.00
LINEITEM $395.00 16 $6,320.00

Next, because the locate method has succeeded and stockTC has
moved to the appropriate record, line 9 returns the available quantity
of the specified stock number. In other words, building on the
previous example, if locate finds the stock number 3340 at record 30,
line 9 returns the value of the Qty field for record 30 and assigns it to
the variable qtyOnHand.

line 10 The 10th line is
qtyOrdered = Self.Value

Strictly speaking, this line is not necessary; it’s included to make the
code that follows easier to read. This line gets the value of the Qty
field object in the current record in the form and stores it in the
variable gtyOrdered.

80 Learning ObjectPAL

lines 12 and 13

lines 14 through 16

Summary

Lines 12 and 13 mark the beginning of the third code block. They are

if qtyOrdered < qtyOnHand then
qtyOnHand = qtyOnHand - qtyOrdered

These lines compare the amount ordered with the amount in stock. If
there’s enough in stock, subsequent lines update the Stock table; if
not, execution skips to the else clause to display a dialog box and to
prevent the insertion point from leaving the field object.

Lines 14 through 16 are

stockTC.edit()
stockTC.Qty = qtyOnHand
stockTC.endEdit()

Line 14 puts stockTC (and, by extension, the Stock table) into Edit
mode. Line 15 assigns the updated value of gtyOnHand to the Qty

field of the current record of stockTC. Line 16 takes stockTC out of Edit
mode.

Summary

A TCursor is a powerful ObjectPAL construct. Using a TCursor, you
can work with the data in a table without displaying the table. This
chapter showed you how to

3 Manipulate data in a table that isn’t included in the form’s data
model

7 Open a TCursor onto a table
Use a TCursor to search for a value in a table

Use a TCursor to edit the underlying table

Chapter 9, Working outside the data model 81

82 Learning ObjectPAL

Note

CHAPTER

Where do | go from here?

This tutorial has introduced the basic concepts and techniques of
ObjectPAL. As you have seen, by using the power of interactive
Paradox and these basic techniques, you can accomplish many
fundamental database programming tasks. When you need to do
more, or if you're just curious about how much ObjectPAL can really
do, the following resources are availabl-:

7 The ObjectPAL Developer’s Guide provides detailed discussions and
examples of all aspects of building ObjectPAL applications.
Passages of special interest to beginning programmers are marked
with the First Step icon shown in the margin.

T The ObjectPAL Reference is a complete reference to the built-in
methods, basic language elements, and methods and procedures
in the run-time library. Entries for beginning programmers are
marked with the word Beginner.

3 Example applications

The example files include one full-scale application (the Dive
Planner) and several mini-apps. All of the examples include online
interactive help that explains how to use them as well as help
systems that explain the ObjectPAL code attached to each object. As
you run these applications, you can get help on using them by
pressing F1 or choosing an item from the Help menu in the menu bar.
You can also get ObjectPAL help by inspecting (right-clicking) an
object and choosing Code Help from its pop-up menu. When you
choose Code Help, you open a Help window listing the methods and
procedures attached to the object you inspected, as shown in Figure
10-1. Then, in the Help window, you can choose an item that interests
you and display the actual code and text that explains the code.

The Dive Planner application is a learning tool. It demonstrates many
approaches and techniques for using ObjectPAL, but it is not
intended to demonstrate a real-world application.

Chapter 10, Where do | go from here? 83

Where do | go from here?

At any time while you're running
an example application, you can
inspect an object to display a
pop-up menu. Choose Code Help
to open a Help window showing
the ObjectPAL code attached to
that object.

(In the Dive Planner. the dive flag
represents the form.)

When you inspect an object and
choose Code Help, a Help
window opens showing all the
ObjectPAL code attached to that
object. In this figure, the window
on the left lists the code attached
to the form.

Choose a method from this list to
open a second window
containing the source code for
the method and text that explains
it. In this figure, the window on
the right explains the form’s
built-in open method.

84 Learning ObjectPAL

Figure 10-1 Using the Help system in the example applications

DIVEPLAN

Methods.

mousebxit
mouseRightCown
destghe

Methods and procs from library MASTLIB.LSL

== Paradox for Windows - [Main] via
=| Selections Results Help +
MAST,Inc.
j Objd Properties
L SITES
Code Help .
About MAST
‘Select exotic locations.
MARINE LIFE
2
Select local marine life.
WRECKS
Select interesting shipwrecks.
“ Process x Exit /%Clgar ? Help
Source Listing 1+1~

open

DIVEPLAN.open

Cpenz MASTLIE LEL library if faund in WORK directory. Opens and
raximizes DIVEPLAN FSL, sets formiame to dvePlan, and hides the
SpeedBar

methoAd spaniwar awentInfo Event)

1f eventInfo.1sPraFilter()
then
doDafault
elge
if not 1sFile(diveplan.fel”) then
regInfo(”Startup Error!”, “The MAST application fileg)
;cloze() shemporarily commented out
endi f
;cpen library (make sure that it ic in the WORK diractory
if not mactlib.open("MactLib", globalToDecktop)
then
MegStop(“Failure’, "Mastlik could not be opsnad’)
endi £
; associats form MOkjest name with formdlame war
formame .attashi)
hideSpeedBar ()
claarQueryBttn.pushbutteni)
endi f

andmethad

J:L] -

< > (comparison operators) 48, 59, 81
_ (underscore), in object names 41, 48

A

access rights 6
action constants 35, 38, 39, 51
action method
attaching code to 37, 40
built-in 37
inserting records with 51
simulating actions with 35
table frames and 67
UlObject type 35
validity checking and 64
actions
See also events
initiating 31, 35
responding to 31, 36, 39, 40
Advanced Level 23
aliases 2
Alternate Editor command 18, 23
animation, creating 1
applications
creating 7, 31
multi-form 69
multi-table 55, 66
sample 32, 83
arguments, defined 29
arrays 12
attach method 51

beep procedure 49
Beginner level 20, 22
constants for 35
blank values 63
boxes 7
Browse Sources command 22
built-in methods 9
defined 26
disabling 38
displaying 27

 INDEX

executing immediately 62, 65
modifying 10, 15
Button tool 26, 33,57, 70
buttons
attaching code to 26, 34, 71
clicking 26
copying to Clipboard 28
creating 26, 33
inserting records with 34
inspecting properhes 26
naming 34
redefining 26

C

C programming language 12
C++ programming language 12
calculations 61
Cancel Changes command 65
canDepart method

editing 59, 78

validity checking and 59
changeValue method 10

editing 61
Check Syntax command 18, 28
choice lists 7
classes

See object types
Clipboard

copying to 18,28

pasting from 18
close method, dialog boxes and 74
closer-is-better principle 67
cMax method 52
Code Help command 83
comments in code 50
comparison operators (< >) 48,59, 81
Const window 16
constants

action 35, 38, 39, 51

Beginner level 35

declaring 16

defined 22

Editor 36

Index

85

error 60, 66 design objects 63

global 16 Desktop

inserting in code 21 modifying 22

record 35 title of 12

viewing 21 Desktop Properties dialog box 22
Constants dialog box 21 dialog boxes
containers, code 17 associating with Form variable 73
containership hierarchy 7 calling 72
control structures 5, 12 closing 74
Copy command 18 designing 69
cursor displaying 25

See insertion point displaying values in 45
custom methods 16 entering values in 43
Cut command 18 forms as 69

managing 71
D modal 29, 74
properties of 70

data returning control 74

See values testing data entry 48
data entry, validity checking 7, 55-68 directories

See also validity checking creating 13
data model specifying 51

adding to 33 working 2

creating 55 disableDefault keyword 38

working outside 77 Display Objects and Properties dialog box 21
Data Model dialog box 33, 55, 69 DLL, calling code from 17
data types doDefault keyword 51, 62, 65

specifying 45

user-defined 12, 17 E
DataArriveRecord constant 36, 40
DataBegin constant 35 Edit Data command 35
DataBeginEdit constant 36, 51 Editor 15-23
DataCancelRecord constant 35 actions in 18
DataDeleteRecord constant 35 activating 26
DataEnd constant 36 alternate 23
DataEndEdit constant 36 constants for 36
DatalnsertRecord constant 35, 51 mouse function in 18
DataLockRecord constant 35 navigating in 18
DataNextrecord constant 36 Editor menu 17
DataPostRecord constant 35, 39, 51, 52, 65 Editor window 17
DataPriorRecord constant 36 opening 26
DataUnlockRecord constant 35, 65 size of 23
dates text handling 17

checking validity 58 ellipses 7

returning 60 endIf keyword 39

syntax for 42 endMethod keyword 29
Debugger 24 endVar keyword 45
delaying execution 60 enumSource method 22
Delete command 18 errorCode procedure 66

Deliver command 22
Design command 26
Design Layout dialog box 33, 69

86 Learning ObjectPAL

errors
Check Syntax command and 18
constants for 60, 66
displaying messages 23, 60
eventInfo variable and 60
returning 60
testing for 18, 28, 66
validity checking and 58
warning 19, 23
eventInfo variable 29, 38, 60, 65
errors and 60
events
See also actions
handling 12
responding to 9, 12, 26, 36
Windows applications and 9
example applications 32, 83
execution, delaying 46, 60, 73

F

.FDL files 22
FieldBackward constant 36
FieldForward constant 36, 38
fields
assigning values to 41
blank values in 63
changeValue method and 62
displaying values 52
editing format of 6
editing values 10
generating values for 61
maximum value 52
naming 41, 48
queries and 6
selecting multiple 57
tab order 36
validity checking 55, 66
viewing properties of 57
File Browser 13
files
deleting 13
renaming 13
specifying location of 51
for loops 5
Form type, declaring variables 73
Form Window Properties dialog box 70
formReturn method 74
forms
See also dialog boxes
built-in methods for 64
closing 74

controlling 69
creating 26, 33
delivering 22

as dialog boxes 12, 69
editing 51

getting values from 74
inspecting 64

key violations and 65
as manager 65
manipulating 12
modal 74

multiple 12, 69
multi-table 55, 66
objects in 7

pages of 9
properties 69
returning control 74
running 26

tabs in 36

UIObjects and 9
validity checking 63
viewing source code of 22

G

Go To command 18

H

handle, defined 51

Hello world program 25
Help system (Windows) 12
Help window 83

id method 38, 41, 65
ID numbers, creating 6
if statements 38
if..endif block 38
if..then block 5, 49
input/output 43
Insert Type button 20
insertion point, controlling 36, 38, 57
inspect, defined 8
INSTALL program 32
isBlank method 63

Index

87

88

K

key violations 63

multi-table forms 67
keystrokes, responding to 12
keywords 19

disableDefault 38

endif 39

endVar 45

if 38

not 49

var 29,45
Keywords command 19

L

Language menu 18
Level command 22
libraries

calling code from 17

run-time 12,29
lines (drawn) 7
links

See tables, linking
locate method 48,79
locks, record 35
lookup tables 7
loops 5, 38, 49

M

menus, creating 12
message procedure 46, 49, 60
messages
See also errors
displaying 46
displaying in dialog box 25
methods
See also built-in methods
attaching to objects 26
calling external 17
comments in 50
creating 20
custom 16
debugging 24
defined 5
delaying execution of 46, 60, 73
disabling 38
displaying syntax 20
editing 15, 28
editing multiple 16
syntax 3
user-defined 12

Learning ObjectPAL

Methods dialog box 15,19, 27
modal dialog boxes 29,74
mouse events 12
mouseClick method 10
MoveEvent type 60
moveTo method 38
msglnfo procedure 29, 54, 66
multi-form applications 69
multi-table forms 55

key violations 66

N

naming conventions

objects vs. fields 48

spaces in names 41, 48

underscore () in names 41
networks, ID numbers for 6
New Custom Method field 16
New Form dialog box 26
Next Warning command 19
not keyword 49
Notepad (Windows) 18
Number type

declaring 48

Table type versus 51
numbers

performing calculations 61

returning maximum 52

O

Object Name dialog box 34
Object Tree 7
Object Tree command 8, 19
object types

defined 9

inserting name in code 20
ObjectPAL Debugger

See Debugger
ObjectPAL Editor

See Editor
objects

See also built-in methods; properties

built-in methods 26
declaring global variables 16
defined 7

defined for advanced programmers 13

defining behavior of 9,26
design 63

displaying properties of 21
focus status of 12

forms and 7
inspecting 26
modular nature of 10
naming 34, 41, 48
position of 12
program design aspects 11
properties of 9
relationship between 7
responding to events 9
Self variable and 42
tabs and 36
unnamed 42
viewing source code 22
visual nature of 7
open method 73,79
operators, comparison (< >) 48, 59, 81

P

parameters, defined 29
Pascal 12
Paste command 18
peKeyViol constant 66
Print File dialog box 53
print method 54
printing
page ranges 53
reports 52
setting specifications 53
Proc window 17
procedures, user-defined 17
properties
basic syntax 41
browsing 21
defined 7
dialog box 70
displaying 21
inspecting 8, 26
manipulating 39
Self variable and 42
setting 2,12, 22
setting multiple 57
Tab Stop 57
viewing 57
Properties menu 10, 22
ObjectPAL routines versus 12
protection
See access rights
pushButton method 29
attaching code to 28, 34, 71
editing 26, 46, 50

Q

QBE files, creating 13
queries 49
creating 13
fields and 6
ObjectPAL routines versus 6

R

records 12
See also tables
constants for 35
deleting 35
displaying 40
inserting 34, 35, 50
key violations 63
locking 35, 64, 67
moving between 40
posting 39, 65
searching for 46
unlocking 35, 65, 67
validity checking 55, 63
Replace command 18
Replace Next command 18
Report type, declaring variables 54
reports
print specifications for 53
printing 52
reserved words
See keywords
run-time library 12, 29

S

sample applications 32, 83
Save command 28
scope, defined 16
Search command 18
Search Next command 18
searches 46
strings 18
tables 13,79
search/replace operations 49
Select All command 18
Select command 18
Self variable 59, 63, 80
defined 42
setErrorCode method 60
Show Compiler Warning command 23
sleep procedure 46, 49, 60
sounds, creating 49
spaces, in object names 41, 48

Index

89

SpeedBar titles, editing 22

hiding 12 today procedure 59
placing objects with 1 Type window 17
TCursors and 77 types
UlObjects and 9 See data types; object types
String type, declaring variables 45 Types and Methods dialog box 19
strings
searching for 18 U
storing 45
syntax UIObjects
displaying 20 built-in methods 10
errors 18 defined 9
notation in book 3 listing 21
underscore (), in object names 41, 48
T Undo command 58
user interface
Tab Stop property 57 creating 6
table frames 7 event-driven 9
attaching code to 67 Uses window 17
defined 13
key violations and 67 \'
Table type
attaching variable to table 51 validity checking 55-68, 78
defined 13 adding 59
Number type versus 51 built-in 58
tables canDepart method and 59
See also records supplying values 60
attaching Table variable to 51 Value property 41, 52,74
hidden 77 values
inserting records in 34, 35, 50 assigning to fields 41
key violations 66 assigning to variables 45, 52
linking 55 blank 63
lookup 7 changing 61
manipulating 12 maximum 52
multiple 55, 66 searching for 46
outside data model 77 testing for 48
pointers to 77 var keyword 29, 45
posting values to 62 Var window 16
sample 32 variables
searching 13, 46, 48, 79 assigning value to 45
sorting 2,13 declaring 16, 43, 45,73
TCursors and 77 Form type 73
TableView type, defined 13 global 16
tabs, controlling 36, 57 as handles 51
TCursors 77-81 Number type 48, 51
defined 13,77 Report type 54
opening 79 scope of 16
SpeedBar and 77 String type 45
text Table type 51
deleting 18 view method 45

displaying 46
selecting 18

90 Learning ObjectPAL

W

wait method 73
warning errors 19

displaying 23
while loops 5
Window Sizing command 23
Window Style command 7
windows, size of 23
Windows (Microsoft) program,

events and 9

working directory 2

Index 2!

PARADOX

FOR WINDOWS

BORLAND

Corporate Headquarters: 1800 Green Hills Road, P.0. Box 660001, Scotts Valley, CA 95067-0001, (408) 438-8400. Offices in: Australla,
Belgium, Canada, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Malaysia, Netherlands, New Zealand, Singapore, Spain,
Sweden, Taiwan and United Kingdom = Part # PDX1110WW21774 = BOR 4901

